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CONTINUOUS SHADOWING AND STABILITY FOR

GROUP ACTIONS

Sang Jin Kim

Abstract. Recently, Chung and Lee [2] introduced the notion of topo-
logical stability for a finitely generated group action, and proved a group

action version of the Walters’s stability theorem. In this paper, we intro-

duce the concepts of continuous shadowing and continuous inverse shad-
owing of a finitely generated group action on a compact metric space X

with respect to various classes of admissible pseudo orbits and study the

relationships between topological stability and continuous shadowing and
continuous inverse shadowing property of group actions. Moreover, we in-

troduce the notion of structural stability for a finitely generated group
action, and we prove that an expansive action on a compact manifold is

structurally stable if and only if it is continuous inverse shadowing.

1. Introduction

The shadowing property was first established for systems generated by hy-
perbolic diffeomorphisms and later for those generated by hyperbolic home-
omorphisms. Shadowing, or the pseudo orbit tracing property, is one of the
interesting concepts in the qualitative theory of smooth dynamical systems. It
says that any δ-pseudo orbit can be uniformly approximated by a true orbit
with a given accuracy if δ is sufficiently small. The concept of inverse shad-
owing was established by Corless and Pilyugin [3] and Kloden and Ombach
[4] redefined this property using the δ-method. Generally speaking, inverse
shadowing means that given a class of approximating methods, one can trace
any real orbit with an arbitrary accuracy by an orbit generated with a precise
enough method. Moreover the notions of continuous shadowing and continuous
inverse shadowing was introduced and discussed in [5].

Furthermore, Walters [11] introduced the notion of topological stability, a
kind of stability for homeomorphisms for which continuous pertubations are
allowed, and proved that every expansive homeomorphism with the shadow-
ing property on a compact metric space is topologically stable. In [5] Lee
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proved that every expansive homeomorphism with the shadowing property is
Tα-shadowing. In this paper we will obtain a group action version of result.
Expansive action with shadowing property motivated by a classical dynamical
system that can be considered as an action of the group Z. Very recently, Chung
and Lee [2] introduced the notion of topological stability for finitely generated
group actions, and Pilyugin et al. [8,9] introduced the notions of shadowing and
inverse shadowing for finitely generated group actions which are generalizations
of those of topological stability, shadowing and inverse shadowing, respectively,
for homeomorphisms on compact metric spaces.

In this paper we introduce the concepts of continuous shadowing and con-
tinuous inverse shadowing of a finitely generated group action on a compact
metric space X with respect to various classes of admissible pseudo orbits and
study the relationships between topological stability and continuous shadowing
and continuous inverse shadowing property of group actions. Furthermore we
introduce the concept of structural stability for finitely generated group actions
on compact smooth manifolds and show that an expansive action is structurally
stable if and only if it is continuous inverse shadowing.

2. Preliminaries

Let G be a finitely generated group with the discrete topology and X be
a compact metric space with a metric d. Put Homeo(X) the space of all
homeomorphisms of X. We denote by Act(G,X) the set of all continuous
actions T of G on X; i.e., T : G×X → X is a continuous map such that T (g, ·)
is continuous, T (e, x) = x and T (g, T (h, x)) = T (gh, x) for x ∈ X and g, h ∈ G,
where e is the identity element of G. For simplicity, T (g, x) will be denoted by
Tg(x). Let Homeo(X)G =

∏
GHomeo(X) be the set of homeomorphisms from

G to Homeo(X) with the product topology. Then Act(G,X) can be considered
as a subset of Homeo(X)G. Let A be a symmetric finitely generating set of G,
i.e., for any a ∈ A, a−1 ∈ A. If A is a finitely generating set of G, then there
always exists a symmetric finitely generating set containing A. Throughout the
paper, a finitely generating set A of G means a symmetric finitely generating
set. We define a metric dA on Act(G,X) by

dA(T, S) = sup{d(Ta(x), Sa(x)) | x ∈ X, a ∈ A}
for T, S ∈ Act(G,X). Then the topology on Act(G,X) induced by dA coincides
with the product topology on Act(G,X) inherited from Homeo(X)G. Hence
the space Act(G,X) is a separable complete metrizable topological space, and
so a Baire space.

Recently, Chung and Lee [2] introduced the notion of topological stability of
a finitely generated group action on a compact metric space. We say that an
action T ∈ Act(G,X) is topologically stable with respect to a finitely generating
set A of G if for every ε > 0, there exists δ > 0 such that if S is another
continuous action of G on X with dA(T, S) < δ, then there exists a continuous
map f : X → X with Tgf = fSg for every g ∈ G and d(f, IdX) ≤ ε. An action
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T is said to be topologically stable if it is topologically stable with respect to A
for some finitely generating set A of G.

If T and S are two continuous actions of G on X with dA(T, S) < δ,
then the S-orbit {Sg(x)}g∈G of x ∈ X is nearly a T -orbit in the sense that
d(Ta(Sg(x)), Sag(x)) < δ for all a ∈ A and g ∈ G. This observation motivates
the following definition. Let A be a finitely generating set of G and δ > 0. A
δ-pseudo orbit of T ∈ Act(G,X) with respect to A is a sequence {xg}g∈G in X
such that d(Ta(xg), xag) < δ for all a ∈ A and g ∈ G. An action T ∈ Act(G,X)
is said to have the shadowing property with respect to A if for every ε > 0,
there exists δ > 0 such that any δ-pseudo orbit {xg}g∈G for T with respect to
A is ε-traced by some point x of X, that is, d(Tg(x), xg) < ε for all g ∈ G.

Let XG be the compact metric space of all sequences ξ = {xg : g ∈ G}
with elements xg ∈ X, endowed with the product topology. Suppose that
G = {gi|i ∈ N} is countable. Then we define a metric D on XG by

D((xgi)i∈N, (ygi)i∈N) = sup
i∈N
{ d̄(xgi , ygi)

2i
}

for any (xgi)i∈N, (ygi)i∈N ∈ XG, where d̄(xgi , ygi) = min{d(xgi , ygi), 1}. Let A
be a finitely generating set of G. For δ > 0, let ΦT (δ, A) denote the set of all
δ-pseudo orbits of T with respect to A. A mapping ϕA : X → ΦT (δ, A) ⊂ XG

satisfying (ϕA(x))e = x, (x ∈ X) is said to be a δ-method for T with respect
to A, where ϕA(x) will be denoted by {ϕA(x)g}g∈G. We say that ϕA is a
continuous δ-method for T with respect toA if ϕA is continuous. The set of all δ-
methods [resp. continuous δ-methods] for T with respect to A will be denoted by
T0(T, δ, A) [resp. Tc(T, δ, A)]. Every S ∈ Act(G,X) with dA(T, S) < δ induces
a continuous δ-method ϕA : X → XG for T with respect to A by defining
ϕA(x) = {Sg(x) : g ∈ G}. Let Th(T, δ, A) denote the set of all continuous δ-
method ϕA for T with respect to A which are induced by S ∈ Act(G,X) with
dA(T, S) < δ. To introduce the notions of continuous shadowing with respect
to various classes of admissible pseudo orbits, we define Pα(T, δ, A) by

Pα(T, δ, A) =
⋃

ϕA∈Tα(T,δ,A)

ϕA(X),

where α = 0, c, h. Clearly we have

Ph(T, δ, A) ⊂ Pc(T, δ, A) ⊂ P0(T, δ, A) = ΦT (δ, A).

We denote Tα(T,A) =
⋃
δ>0 Tα(T, δ, A), where α = 0, c, h.

Definition. Let A be a finitely generating set of G. An action T ∈ Act(G,X)
is said to be Tα-shadowing with respect to A for α = 0, c, h if for every ε > 0,
there exists δ > 0 and a map r : Pα(T, δ, A)→ X such that d(Tg(r(x)), xg) < ε
for any x = {xg}g∈G ∈ Pα(T, δ, A) and all g ∈ G. We say that T is Tα-
continuous shadowing with respect to A if the map r is continuous.
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Note that the T0-shadowing property is equal to the shadowing property in
[2]. We observe that the definition of shadowing property (resp. continuous
shadowing property) of an action T ∈ Act(G,X) is independent of the choice
of generating sets.

Lemma 2.1. Let A and B be symmetric finitely generating sets of G. An
action T ∈ Act(G,X) is Tα-shadowing (resp. Tα-continuous shadowing) with
respect to A if and only if it is Tα-shadowing (resp. Tα-continuous shadowing)
with respect to B, where α = 0, c, h.

Proof. Assume that T ∈ Act(G,X) is Tα-(continuous) shadowing with respect
to A. For any ε > 0, there are δA > 0 and a (continuous) map r : Pα(T, δA, A)
→ X such that d(Tg(r(x)), xg) < ε for any x = {xg}g∈G ∈ Pα(T, δA, A)
and g ∈ G. We claim that there exists a δB > 0 such that Pα(T, δB , B) ⊂
Pα(T, δA, A). Put m = max

b∈B
lB(a), where lB is the word length metric on

G induced by B. Choose δ1 > 0 such that mδ1 < δA. Since X is compact
and B is finite, there exists 0 < δB < δ1 such that d(Th(x), Th(y)) < δ1 for
x, y ∈ X with d(x, y) < δB and for h ∈ G with lB(h) ≤ m. For any a ∈ A, we
write a as b1 · · · bl(a) where l(a) = lB(a), bi ∈ B, i = 1, . . . , l(a). Then for any
{xg}g∈G ∈ Pα(T, δB , B), we have

d(Taxg, xag) = d(Tb1···bl(a)xg, xb1···bl(a)g)

≤ d(Tb1···bl(a)xg, Tb1···bl(a)−1
xbl(a)g)

+ d(Tb1···bl(a)−1
xbl(a)g, Tb1b2···bl(a)−2

xbl(a)−1bl(a)g)

+ · · ·+ d(Tb1b2xb3···bl(a)g, Tb1xb2···bl(a)g)

+ d(Tb1xb2···bl(a)g, xb1···bl(a)g)

< (m− 1)δ1 + δB < (m− 1)δ1 + δ1 = mδ1 < δA.

This means that {xg}g∈G ∈ Pα(T, δA, A). Thus Pα(T, δB , B) ⊂ Pα(T, δA, A).
Let r̄ is restriction of r from Pα(T, δB , B) to X. Then the (continuous) map
r̄ : Pα(T, δB , B) → X satisfies d(Tg(r(x)), xg) < ε for all x = {xg}g∈G ∈
Pα(T, δB , B) and g ∈ G. Thus T is Tα-(continuous) shadowing with respect to
B. �

Definition. An action T ∈ Act(G,X) is said to be Tα-shadowing (resp. Tα-
continuous shadowing) if T ∈ Act(G,X) is Tα-shadowing (resp. Tα-continuous
shadowing) with respect A for some finitely generating set A of G where α =
0, c, h.

Now we introduce the notions of continuous inverse shadowing with respect
to various classes of admissible pseudo orbits of a finitely generated group
action. First, we recall the concepts of inverse shadowing for group actions
which was introduced in [9]. An action T ∈ Act(T,A) is said to be Tα-inverse
shadowing property with respect to A if for any ε > 0, there exists δ > 0 such
that for any p ∈ X, any ϕ is δ-method for T with respect to A, there is x ∈ X
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such that d(Tg(p), ϕ(x)g) < ε for all g ∈ G. When discussing inverse shadowing
for homeomorphisms, an appropriate choice of the class of admissible pseudo
orbits is crucial [3, 4].

Definition. An action T ∈ Act(G,X) is said to be Tα-inverse shadowing with
respect to A for α = 0, c, h if for every ε > 0, there exists δ > 0 such that
for any δ-method ϕA ∈ Tα(T, δ, A) there is a map s : X → X satisfying
d(Tg(x), ϕA(s(x))g) < ε for x ∈ X and all g ∈ G. We say that T is Tα-
continuous inverse shadowing with respect to A if the map s is continuous.

Lemma 2.2. Let A and B be symmetric finitely generating sets of G. An
action T ∈ Act(G,X) is Tα-inverse shadowing (resp. Tα-continuous inverse
shadowing) with respect to A if and only if it is Tα-inverse shadowing (resp.
Tα-continuous inverse shadowing) with respect to B, where α = 0, c, h.

Proof. Assume that T ∈ Act(G,X) is Tα-(continuous) inverse shadowing prop-
erty with respect to A. For ε > 0, let δA correspond to ε by the Tα-inverse
shadowing property with respect to A. For δA > 0, there exists δB > 0
such that Tα(T, δB , B) ⊂ Tα(T, δA, A) by the same proof of Lemma 2.1. For
ϕB ∈ Tα(T, δB , B), there is ϕA ∈ Tα(T, δA, A) such that ϕA(x) = ϕB(x) for
all x ∈ X. Since T is Tα-(continuous) inverse shadowing property with respect
to A, there is a (continuous) map s : X → X satisfying

d(Tg(x), ϕA(s(x))g) < ε

for all x ∈ X and g ∈ G. Then T is Tα-(continuous) inverse shadowing with
respect to B. �

Definition. An action T ∈ Act(G,X) is said to be Tα-inverse shadowing (resp.
Tα-continuous inverse shadowing) if T ∈ Act(G,X) is Tα-inverse shadowing
(resp. Tα-continuous inverse shadowing) with respect A for a finitely generating
set A of G.

3. Continuous shadowing and continuous inverse shadowing

In this section, we describe the relationship between continuous shadowing,
continuous inverse shadowing for finitely generated group actions. Moreover,
we study about topological stability for finitely generated group action by using
continuous shadowing and continuous inverse shadowing.

First, we observe that there is no relationship between shadowing and in-
verse shadowing for finitely generated group actions. Indeed, there is a home-
omorphism with inverse shadowing property but it is not shadowing property.
Lewowicz [7] showed that there is a pseudo Anosov map on a compact surface
which is expansive and Th-inverse shadowing but it does not have shadowing
property. Conversely, the following example shows that there is a finitely gener-
ated group action with shadowing property but it does not have inverse shadow-
ing property. We adapt the counterexample in [11]. First, we recall the notion
of shift action for finitely generated group which is introduced in [2]. Let A be a
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finitely generating set of G. For any k ∈ N, we put B(k) = {g ∈ G : lA(g) ≤ k}
where lA(g) is the minimal word length metric on G induced by A. Let F be a
finite set. We denote by FG the product space

∏
G F endowed with the product

topology. We consider the action of G on FG by left shift, i.e., (gx)h = xgh for
every g, h ∈ G and x ∈ FG. We define a metric D on FG by

D(x, y) = 2−k, k = sup{j ∈ N : xg = yg for all g ∈ B(j)}

for x, y ∈ FG, where B(j) = {g ∈ G : lA(g) ≤ j}.

Example 3.1. Let X = FG and T be a left shift action on X where A is a
symmetric finitely generating set. It is easy to show that T is expansive with
shadowing property (topologically stable). We show that T does not have Th
inverse shadowing with respect to A. Let ε = 1

2 . For any δ > 0, pick m ∈ N
with 1

2m < δ. Define S : G×X → X by

(g, (xh)h∈G)h =


xh, lA(h) ≥ m+ n,
xgh, lA(h) ≥ lA(gh), lA(h) ≤ m+ n− 1,
xgh, lA(h) < lA(gh), lA(h) ≤ m− 1,
xh−1 , lA(h) < lA(gh), lA(h) = m, . . . ,m+ n− 1

with dA(T, S) = 1
2m where lA(g) = n. It is clear that S ∈ Act(G,X). Choose

ϕA ∈ Th(T, δ, A) such that ϕA(x) = {Sg(x)}g∈G for given S ∈ Act(G,X). If
T has the inverse shadowing property with respect to Th(T,A), then for any
x ∈ X, there exist y ∈ X such that

(1) D(Tg(x), Sg(y)) <
1

2
= ε for all g ∈ G,

where x = {xh}h∈G, y = {yh}h∈G.
Choose x ∈ X satisfying xe 6= xg for any g ∈ G \ {e}. If xe 6= ye, then

D(Te(x), Se(y)) = 1 > 1
2 = ε. If xe = ye, then for a ∈ A, D(TaN (x), SaN (y)) =

1 > 1
2 = ε for N = 2m+ 1. It is a contradiction to the inequality (1). Thus T

is not Th-inverse shadowing property with respect to A.

Consequently, we observe that there is no relationship among shadowing
and continuous inverse shadowing; inverse shadowing property and continuous
shadowing. However, if T ∈ Act(G,M) is a continuous group action on com-
pact manifold M , then the continuous shadowing (resp. continuous inverse
shadowing) implies inverse shadowing (resp. shadowing).

Theorem 3.2. Let T ∈ Act(G,M) be an action on compact manifold M . Then

(i) if T is Tα-continuous shadowing, then it is Tα-inverse shadowing where
α = c, h,

(ii) if T is Tα-continuous inverse shadowing, then it is Tα-shadowing, α =
0, c, h.

Proof. (i) Suppose that T ∈ Act(G,X) is Tc-continuous shadowing with re-
spect to a finitely generating A of G. For ε > 0, there are δ > 0 and a
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continuous map r : Pc(T, δ, A) → M such that d(Tgr(x), xg) < ε for all
x = {xg}g∈G ∈ Pc(T, δ, A) and g ∈ G. Let ϕA ∈ Pc(T, δ, A) and x ∈ M .
Then d(Tg(r(ϕA(x))), ϕA(x)g) < ε for all g ∈ G. Since r ◦ ϕA : M → M is
continuous and d(r(ϕA(x)), x) < ε for all x ∈ M , the map r ◦ ϕA is surjective
for sufficiently small ε > 0. Choose yx ∈M such that r(ϕA(yx)) = x and define
a map s : M →M by s(x) = yx for all x ∈M . Then we have

d(Tg(x), ϕA(s(x))g) = d(Tg(r(ϕA(yx))), ϕA(yx)g) < ε

for all g ∈ G. Therefore T is Tc-inverse shadowing. Similarly we can show that
if T is Th-continuous shadowing, then it is Th-inverse shadowing.

(ii) Suppose T is Tα-continuous inverse shadowing property with respect
to a finitely generating set A of G. Let ε > 0 be arbitrary. Then we can
choose δ > 0 such that for any δ-method ϕA ∈ Tα(T, δ, A), there exists a
continuous map s : M → M satisfying d(Tg(x), ϕA(s(x))g) < ε for all x ∈ M
and all g ∈ G. If g = e, then d(x, s(x)) < ε for all x ∈ M . Since the map
s is continuous, it is surjective for sufficiently small ε > 0. To show that T
is Tα-shadowing, we define a map r : Pα(T, δ, A) → M as follows. For any
y = {yg}g∈G ∈ Pα(T, δ, A), there exist y ∈ M and ϕ ∈ Tα(T, δ, A) satisfying
y = ϕ(y). Note that the point y is unique since ye = ϕ(y)e = y. Since s is
surjective, we can choose x ∈M with s(x) = y, and define r(y) = x. Then r is
a desired map. In fact, we have

d(Tg(r(y)), yg) = d(Tg(x), ϕ(s(x))g) < ε

for all y = {yg}g∈G and g ∈ G. Thus T is Tα-shadowing with respect to A. �

Here, we observe that T0-continuous shadowing does not imply inverse shad-
owing in general. In fact, let f be an Anosov diffeomorphism satisfying Axiom
A on a compact smooth manifold. Then f satisfies strong transversality con-
dition, and so f has the shadowing property (See [10]). By [6], since f is
expansive, f has the continuous shadowing property. Moreover, by [3], since f
satisfies strong transversality condition, f does not have the T0-inverse shad-
owing property.

Clearly, we know that continuous shadowing implies shadowing but the con-
verse is not true. In fact, Yano [12] constructed an example of a homeomor-
phism f which is shadowing but it is not topologically stable, and so it is
not Th-continuous shadowing by Theorem 3.4 below. However, if an action
T is expansive, then T is Tα-shadowing if and only if T is Tα-continuous
shadowing, where α = 0, c, h. We recall that an action T ∈ Act(G,X) is
expansive if there exists a constant η > 0 such that for every x 6= y, one has
sup
g∈G

d(Tg(x), Tg(y)) > η. The constant η is called an expansive constant of T .

In [6], Lee and Sakai showed that every expansive homeomorphism with
shadowing property have the continuous shadowing property. In this section,
we obtain a similar result for finitely generated group actions.
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Theorem 3.3. Let T ∈ Act(G,X) be an expansive group action. Then T
is the Tα-shadowing if and only if T is the Tα-continuous shadowing, where
α = 0, c, h

Proof. We only need to prove if part. Let η > 0 be an expansive constant of T
and A be a finitely generating set of G. For 0 < ε < η

3 , take δ > 0 corresponding
to ε by the shadowing property of T with respect to A. Then for any δ-pseudo
orbit {xg}g∈G of T with respect to A there exists a unique y ∈ X satisfying
d(Tg(y), xg) < ε for all g ∈ G. Hence we can define a map r : Pα(T, δ, A)→ X
by r({xg}g∈G) is the ε-shadowing point of {xg}g∈G ∈ Pα(T, δ, A). We claim
that r is continuous. Since T is expansive, for any ε′ > 0 there exists B(M)
is finite subset of G such that sup

g∈B(M)

d(Tg(x), Tg(y)) ≤ η, then d(x, y) < ε′

where B(M) = {g ∈ G | lA(g) ≤ M} by Lemma 2.10 in [2]. Pick δ′ > 0
with 2Mδ′ < η

3 . Let x = {xg}g∈G, x′ = {x′g}g∈G ∈ Pα(T, δ, A) be given two
δ-pseudo orbits of T with respect to A, and let r(x) = y and r(x′) = y′. If
D({xg}g∈G, {x′g}g∈G) < δ′, then d(xg, x

′
g) <

η
3 for all g ∈ B(M). We have

d(Tg(y), Tg(y
′)) ≤ d(Tg(y), xg) + d(xg, x

′
g) + d(x′g, Tg(y

′)) < ε+ η
3 + ε < η

for all g ∈ B(M). By Lemma 2.10 in [2], we have d(y, y′) < ε′. Therefore r is
continuous. �

Finally, we will study topological stability for group actions.

Theorem 3.4. If T ∈ Act(G,X) is Th-continuous shadowing, then it is topo-
logically stable.

Proof. Suppose T ∈ Act(G,X) is Th-continuous shadowing with respect to a
finitely generating set A of G. For ε > 0, there are δ > 0 and continuous map
r : Ph(T, δ, A) → X such that d(Tg(r(x)), xg) < ε for any x = {xg}g∈G ∈
Ph(T, δ, A) and all g ∈ G. Let S ∈ Act(G,X) be such that dA(T, S) < δ and
Orb(S) = {OS(x) : x ∈ X} where OS(x) = {Sg(x)}g∈G. Let α : Orb(S) ⊂
Ph(T, δ, A)→ X be a continuous choice function such that α(OS(x)) ∈ OS(x)
and α(OS(x)) = α(OS(y)) if y ∈ OS(x) for each x ∈ X. Define a map H :
X → X by

H(x) = (Tg)
−1 ◦ r|Orb(S) ◦O ◦ α ◦O(x), x ∈ X,

where g ∈ G satisfying Sg(x) = α(OS(x)) and O : M → Orb(S) is the orbit
map given by O(x) = {Sg(x) : g ∈ G} for x ∈ X. Then H is a continuous map
satisfying

d(H(x), x) < ε for all x ∈ X and H ◦ Sg = Tg ◦H for any g ∈ G.

In fact, for any x ∈ X there exists h ∈ G such that Sh(x) = α(OS(x)) = x.
Let x = Sh(x), we get

d(H(x), x) = d(Th−1(r(OS(x))), Sh−1(x)) < ε.
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Let y = r(OS(x)). We have

H(Sa(x)) = Ta ◦ Th−1(y) = Ta(H(x))

for all a ∈ A. This completes the proof. �

Corollary 3.5. If T ∈ Act(G,M) is expansive and Th-continuous inverse
shadowing, then it is topologically stable.

Proof. Since T is Th-continuous inverse shadowing, then T is Th-continuous
shadowing by Theorem 3.3 and Theorem 3.2. Then it is topologically stable
by Theorem 3.4. �

4. Structural stability

In this section, we introduce the notion of structural stability for group
actions and show that an expansive group action T is Td-continuous inverse
shadowing if and only if it is structurally stable. Moreover we prove that
if there is g ∈ G such that homeomorphism Tg is expansive and continuous
inverse shadowing, then action T is structurally stable of virtually nilpotent
groups. LetM be a compact smooth manifold without boundary. The following
theorem is the main result in this section.

Theorem 4.1. Let G be a finitely generated virtually nilpotent group and T be
a continuous action of G on compact manifold M . If there exists an element
g ∈ G such that Tg is expansive and Td-continuous inverse shadowing, then T
is structurally stable.

Put Diff(M) be the space of all C1-diffeomorphisms on M . We denote
by Act(G,M) the set of all continuous actions T of G on M such that Tg ∈
Diff(M) for all g ∈ G. Let Diff(M)G =

∏
GDiff(M) be the set of C1-

diffeomorphisms from G to Diff(M) with the product topology. Let A be a
finitely generating set of G. We define a metric d1A on Act(G,M) by

d1A(T, S) = sup{ d(Ta(x), Sa(x)), ‖DTa(x)−DSa(x)‖ |x ∈ X, a ∈ A}

for T, S ∈ Act(G,X).

Definition. We say that T ∈ Act(G,M) is structurally stable with respect to
a finitely generating set A if for any ε > 0, there is δ > 0 such that for any
S ∈ Act(G,M) with d1A(T, S) < δ, there exists a homeomorphism h : M →M
such that

(i) Tg ◦ h(x) = h ◦ Sg(x),
(ii) d(x, h(x)) < ε

for all x ∈M and g ∈ G.

The following lemma shows that structural stability is independent of the
choice of generating sets. The proof is similar to Lemma 2.2 in [2], so we omit
it.
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Lemma 4.2. Let A and B be symmetric finitely generating sets of G. An
action T ∈ Act(G,X) is structurally stable with respect to A if and only if it is
structurally stable with respect to B.

Definition. We say that T ∈ Act(G,M) is structurally stable if T is struc-
turally stable with respect to A for a finitely generating set A of G.

For any δ > 0 and T ∈ Act(G,M), every S ∈ Act(G,M) with d1A(T, S) < δ
induces a continuous δ-method ϕA : M → MG for T with respect to A by
defining ϕA(x) = {Sg(x) : g ∈ G} for each x ∈ M . Let Td(T, δ, A) denote the
set of all continuous δ-method ϕA for T with respect to A which are induced
by S ∈ Act(G,M) with d1A(T, S) < δ. Pd(T, δ, A) =

⋃
ϕA∈Td(T,δ,A) ϕA(M).

Definition. An action T ∈ Act(G,M) is said to be Td-inverse shadowing with
respect to A if for every ε > 0, there exists δ > 0 such that for any δ-method
ϕA ∈ Td(T, δ, A) there is a map s : M →M satisfying d(Tg(x), ϕA(s(x))g) < ε
for x ∈M and all g ∈ G.

We say that T is Td-continuous inverse shadowing with respect to A if the
map s is continuous.

Similarly to Lemma 2.2, it is not hard to show that Td-(continuous)inverse
shadowing is independent of the choice of generating sets.

Definition. An action T ∈ Act(G,X) is said to be Td-inverse shadowing [resp.
Td-continuous inverse shadowing] if T ∈ Act(G,X) is Td-inverse shadowing
[resp. Td-continuous inverse shadowing] with respect A for a finitely generating
set A of G.

Next we will provide a class of structurally stable group actions. Let us
recall the definition of a virtually nilpotent group. A subgroup H of G is said
to be normal if gH = Hg for all g ∈ G. Let G be a countable group. The
lower central series of G is the sequence {Gi}i≥0 of subgroup of G defined by
G0 = G and Gi+1 = [Gi, G], where [Gi, G] is the subgroup of G generated by
all commutators [a, b] = aba−1b−1, a ∈ Gi, b ∈ G. We say that G is nilpotent
if there exists n ≥ 0 such that Gn = {e}. The such smallest n is called the
nilpotent degree of G. A finitely generated group G is called virtually nilpotent
if there exists a normal nilpotent subgroup G′ of G having finite index (this
means that the factor group G/G′ is finite).

Lemma 4.3. If T ∈ Act(G,M) is structurally stable, then it is Td-continuous
inverse shadowing.

Proof. Let ε > 0. Then there exists a δ > 0 such that for every S ∈ Act(G,M)
with d1A(T, S) < δ there is a homeomorphism f : M →M satisfies d(f, Id) < ε
and f◦Tg = Sg◦f for all g ∈ G. Let ϕA ∈ Td(T, δ, A) and choose S ∈ Act(G,M)
with d1A(T, S) < δ which implies ϕA(x) = {Sg(x)}g∈G. Take a homeomorphism
f : M → M by the structural stability of T . Define a map s : M → M by
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s(x) = f(x) for all x ∈M .

d(Tg(x), ϕA(s(x))g) = d(Tg(x), Sg(s(x))) = d(Tg(x), Sg(f(x)))

= d(Tg(x), f(Tg(x))) < ε.

Therefore T is Td-continuous inverse shadowing. �

Theorem 4.4. Suppose that T ∈ Act(G,M) is expansive. Then T is struc-
turally stable if and only if T is Td-continuous inverse shadowing.

Proof. Suppose T is structurally stable, by Lemma 4.3, it is Td-continuous
inverse shadowing. Conversely, suppose that T ∈ Act(G,M) is expansive and
Td-continuous inverse shadowing with respect to finitely generating set A. We
claim that T is structurally stable. Let η > 0 be an expansive constant of T
and let 0 < ε < η

2 . Then we can find δ > 0 corresponding to ε by Td-continuous

inverse shadowing with respect to A. Let S ∈ Act(G,M) with d1A(T, S) < δ,
and δ-method ϕA ∈ Td(T, δ, A) such that ϕA(x) = {ϕA(x)g}g∈G = {Sg(x)}g∈G
is a δ-pseudo orbit of T with respect to A for all x ∈ M . Then there exists a
continuous map k : M →M such that

d(Tg(x), Sg(k(x))) < ε for all x ∈M and g ∈ G.

Let α : O(T ) → M be a continuous choice function such that α(OT (x)) ∈
OT (x) and α(OT (x)) = α(OT (y)) if y ∈ OT (x) where O(T ) = {OT (x) |x ∈M}.
Define a map f : M →M by

f(x) = Sg ◦ k ◦ Tg−1(x),

where g ∈ G satisfies Tg−1(x) = α(OT (x)). Then f is a conjugacy between T
and S. In fact, for any x ∈M denote α(OT (x)) by x. Choose h ∈ G such that
x = Thx. Then

f(Ta(x)) = Sh−1 ◦ k ◦ Th−1(Ta(x)) = Sa ◦ Sa−1h ◦ k ◦ Th−1a(x) = Sa(f(x))

for all a ∈ A. Moreover we have

d(f(x), x) = d(f(Th(x)), Th(x)) = d(Sh(k(x)), Th(x)) < ε.

Since the map f is continuous, it is surjective for sufficiently small ε. To show
that f is injective, we suppose f(x) = f(y) for x, y ∈M . Since f ◦Tg = Sg ◦ f ,
we obtain

d(Tg(x), Tg(y)) ≤ d(Tg(x), f(Tg(x))) + d(f(Tg(x)), f(Tg(y)))

+ d(f(Tg(y)), Tg(y))

= d(Tg(x), f(Tg(x))) + d(Sg(f(x)), Sg(f(y)))

+ d(f(Tg(y)), Tg(y))

< ε+ ε < η

for all g ∈ G. Since T is expansive, x = y. Thus f is injective. Therefore f is
conjugacy. �
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To prove the above theorem, we need following lemmas. This proof is similar
to reductive inverse shadowing theorem in [9].

Lemma 4.5. Let G be a finitely generated group and H be a finitely generated
normal subgroup of G. Let T ∈ Act(G,M) be a continuous action of G on X.
If the restriction action T |H : H×M →M is Td-continuous inverse shadowing,
then T is Td-continuous inverse shadowing.

Proof. Let A be a symmetric finitely generating set of H. We extend A to a
symmetric finitely generating set B of G. Let ε > 0. Since M is compact and
B is finite, there exists 0 < δB < ε such that d(Tb(x), Tb(y)) < ε

2 for every
b ∈ B and every x, y ∈M with d(x, y) < δB . We can choose δ < ε

2 for this δB
from the Td-continuous inverse shadowing for T |H . For any ϕB ∈ Td(T, δ, A),
there exist S ∈ Act(G,M) with d1B(T, S) < δ such that ϕB(x) = {Sg(x)}g∈G.
Then d(Tb(Sgx), Sbg(x)) < δ for all b ∈ B and g ∈ G. Fix g ∈ G and x ∈ M .
Since A ⊂ B and H is normal subgroup of G then d(Ta(Shg(x)), Sahg(x)) <
δ. So S|Hg(x) = {Shg(x)}h∈H is a δ-pseudo orbit of T |H with respect to
A. By assumption, we can choose a continuous map f : M → M satisfying
d(Thg(x), Shg(f(x))) < δB for all h ∈ H.

For any b ∈ B and h ∈ H, since H is a normal subgroup of G, there is an
element h′ ∈ H such that bh′ = hb. Then

d(Thbg(x), Shbg(f(x))) = d(Tbh′g(x), Sbh′g(f(x)))

≤ d(Sbh′g(f(x)), Tb(Sh′g(f(x))))

+ d(Tb(Sh′g(f(x))), Tb(Th′g(x)))

≤ δ +
ε

2
< ε.

This means that d(Thg(x), Shg(f(x))) < ε for all g, h ∈ G and x ∈ X. By
applying h = e, we have d(Tg(x), Sg(f(x))) < ε for all g ∈ G. Thus T is
Td-continuous inverse shadowing. �

Lemma 4.6 ([9]). Let T ∈ Act(G,M) be a continuous action of a nilpotent
group G of class n. If there exists g ∈ G such that Tg is Td-continuous inverse
shadowing, then so is T .

Proof. See Lemma 4.2 in [9]. �

Proof of Theorem 4.1. Let H be a nilpotent normal subgroup of G with finite
index. Then H is finitely generated by Proposition 6.6.2 in [1]. Since H has
finite index inG, there exists n ∈ N such that gn ∈ H. Since Tg is Td-continuous
inverse shadowing, then Tgn is also by Lemma 3.5 in [5]. By Lemma 4.6, T |H
is Td-continuous inverse shadowing. Applying Theorem 4.4 and Lemma 4.5,
we complete the proof. �
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