References
- Hungate RE. Introduction: the ruminant and the rumen. The rumen microbial ecosystem. London, UK: Elsevier Science Publishers, Ltd.; 1988.
- Russell J, Muck R, Weimer P. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 2009;67:183-97. https://doi.org/10.1111/j.1574-6941.2008.00633.x
- Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 2007;75:165-74. https://doi.org/10.1007/s00253-006-0802-y
- Wang Y, Cao P, Lei W, et al. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Appl Microbiol Biotechnol 2017;101:3717-28. https://doi.org/10.1007/s00253-017-8144-5
- Niu Q, Li P, Hao S, et al. Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci Rep 2015;5:9938. https://doi.org/10.1038/srep09938
- Wang LZ, Qin X, Kong F, et al. Exploring the goat rumen microbiome from seven days to two years. Plos One 2016; 11:e0154354. https://doi.org/10.1371/journal.pone.0154354
- Xiao DH, Hui YT, Long R, et al. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China. BMC Microbiol 2012;12: 237. https://doi.org/10.1186/1471-2180-12-237
- Wang LZ, Zhou ML, Wang JW, et al. The effect of dietary replacement of ordinary rice with red yeast rice on nutrient utilization, enteric methane emission and rumen archaeal diversity in goats. Plos One 2016;11:e0160198. https://doi.org/10.1371/journal.pone.0160198
- Vigors S, Sweeney T, O'Shea CJ, et al. Pigs that are divergent in feed efficiency, differ in intestinal enzyme and nutrient transporter gene expression, nutrient digestibility and microbial activity. Animal 2016;10:1848-55. https://doi.org/10.1017/S1751731116000847
- Hristov AN, Callaway TR, Lee C, et al. Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid. J Anim Sci 2012;90:4449-57. https://doi.org/10.2527/jas.2011-4624
- Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303
- Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460-1. https://doi.org/10.1093/bioinformatics/btq461
- Caporaso JG, Bittinger K, Bushman FD, et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266-7. https://doi.org/10.1093/bioinformatics/btp636
- Jami E, Israel A, Kotser A, et al. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 2013;7: 1069-79. https://doi.org/10.1038/ismej.2013.2
- Hoover WH. Chemical factors involved in ruminal fiber digestion. J Dairy Sci 1986;69:2755-66. https://doi.org/10.3168/jds.S0022-0302(86)80724-X
- Beauchemin KA, Rode LM, Vjh S. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can J Anim Sci 1996;75:641-4. https://doi.org/10.4141/cjas95-096
- Tan ZL, Lu DX, Hu M, et al. Effect of dietary structural to nonstructural carbohydrate ratio on rumen degradability and digestibility of fiber fractions of wheat straw in sheep. Asian-Australas J Anim Sci 2002;15:1591-8. https://doi.org/10.5713/ajas.2002.1591
- Nkrumah JD, Okine EK, Mathison GW, et al. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci 2006;84:145-53. https://doi.org/10.2527/2006.841145x
- Herd RM, Arthur PF. Physiological basis for residual feed intake. J Anim Sci 2009;87:E64-71. https://doi.org/10.2527/jas.2008-1345
- Ramos MH, Kerley MS. Mitochondrial complex I protein differs among residual feed intake phenotype in beef cattle. J Anim Sci 2013;91:3299-304. https://doi.org/10.2527/jas.2012-5589
- Koch RM, Swiger LA, Chambers D, et al. Efficiency of feed use in beef cattle. J Anim Sci 1963;22:486-94. https://doi.org/10.2527/jas1963.222486x
- Kelly AK, Mcgee M, Crews DH Jr, et al. Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers. J Anim Sci 2010;88:109-23. https://doi.org/10.2527/jas.2009-2196
- Flint HJ, Bayer EA, Rincon MT, et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 2008;6:121-31. https://doi.org/10.1038/nrmicro1817
- Mohammadzadeh H, Yanez-Ruiz DR, Martinez-Fernandez G, et al. Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats. Anaerobe 2014;29:52-8. https://doi.org/10.1016/j.anaerobe.2013.11.012
- Carvalho BF, Aacute Vila CLS, Bernardes TF, et al. Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage. J Appl Microbiol 2017;122: 589-600. https://doi.org/10.1111/jam.13371
- Sevcik C, Noriega J, D'Suze G. Identification of Enterobacter bacteria as saxitoxin producers in cattle's rumen and surface water from Venezuelan Savannahs. Toxicon 2003;42:359-66. https://doi.org/10.1016/S0041-0101(03)00148-X
- Coe ML, Nagaraja TG, Sun YD, et al. Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis. J Anim Sci 1999;77:2259-68. https://doi.org/10.2527/1999.7782259x
- Zhang L, Chung J, Jiang Q, et al. Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. Rsc Adv 2017;7:40303-10. https://doi.org/10.1039/C7RA06588D
- Huo W, Zhu W, Mao S. Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World J Microbiol Biotechnol 2014;30:669-80. https://doi.org/10.1007/s11274-013-1489-8
- Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 2003;46:81-9. https://doi.org/10.1016/S0168-6496(03)00207-1
Cited by
- Characterization of the Rumen Microbiota and Volatile Fatty Acid Profiles of Weaned Goat Kids under Shrub-Grassland Grazing and Indoor Feeding vol.10, pp.2, 2019, https://doi.org/10.3390/ani10020176
- Ruminal microbiota-host interaction and its effect on nutrient metabolism vol.7, pp.1, 2019, https://doi.org/10.1016/j.aninu.2020.12.001