DOI QR코드

DOI QR Code

Cell Surface Antigen Display for Neuronal Differentiation-Specific Tracking

  • Kim, Sang Chul (Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Lee, Eun-Hye (Hanyang Biomedical Research Institute, Hanyang University) ;
  • Yu, Ji Hea (Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine) ;
  • Kim, Sang-Mi (Hanyang Biomedical Research Institute, Hanyang University) ;
  • Nam, Bae-Geun (Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine) ;
  • Chung, Hee Yong (Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Kim, Yeon-Soo (Department of New Drug Discovery & Development, Graduate School of New Drug Discovery & Development, Chungnam National University) ;
  • Cho, Sung-Rae (Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine) ;
  • Park, Chang-Hwan (Graduate School of Biomedical Science and Engineering, Hanyang University)
  • Received : 2018.06.19
  • Accepted : 2018.09.27
  • Published : 2019.01.01

Abstract

Cell therapeutic agents for treating degenerative brain diseases using neural stem cells are actively being developed. However, few systems have been developed to monitor in real time whether the transplanted neural stem cells are actually differentiated into neurons. Therefore, it is necessary to develop a technology capable of specifically monitoring neuronal differentiation in vivo. In this study, we established a system that expresses cell membrane-targeting red fluorescent protein under control of the Synapsin promoter in order to specifically monitor differentiation from neural stem cells into neurons. In order to overcome the weak expression level of the tissue-specific promoter system, the partial 5' UTR sequence of Creb was added for efficient expression of the cell surface-specific antigen. This system was able to track functional neuronal differentiation of neural stem cells transplanted in vivo, which will help improve stem cell therapies.

Keywords

References

  1. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. and Lindvall, O. (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963-970. https://doi.org/10.1038/nm747
  2. Brustle, O., Spiro, A. C., Karram, K., Choudhary, K., Okabe, S. and McKay, R. D. (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. U.S.A. 94, 14809-14814. https://doi.org/10.1073/pnas.94.26.14809
  3. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M. and Studer, L. (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275-280. https://doi.org/10.1038/nbt.1529
  4. Chang, M. Y., Rhee, Y. H., Yi, S. H., Lee, S. J., Kim, R. K., Kim, H., Park, C. H. and Lee, S. H. (2014) Doxycycline enhances survival and self-renewal of human pluripotent stem cells. Stem cell Reports 3, 353-364. https://doi.org/10.1016/j.stemcr.2014.06.013
  5. Davis, A. A. and Temple, S. (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263-266. https://doi.org/10.1038/372263a0
  6. Giachino, C., De Marchis, S., Giampietro, C., Parlato, R., Perroteau, I., Schutz, G., Fasolo, A. and Peretto, P. (2005) cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J. Neurosci. 25, 10105-10118. https://doi.org/10.1523/JNEUROSCI.3512-05.2005
  7. Ichim, C. V. and Wells, R. A. (2011) Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation. J. Transl. Med. 9, 137. https://doi.org/10.1186/1479-5876-9-137
  8. Kugler, S., Meyn, L., Holzmuller, H., Gerhardt, E., Isenmann, S., Schulz, J. B. and Bahr, M. (2001) Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol. Cell. Neurosci. 17, 78-96. https://doi.org/10.1006/mcne.2000.0929
  9. Kugler, S., Kilic, E. and Bahr, M. (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. 10, 337-347. https://doi.org/10.1038/sj.gt.3301905
  10. Park, C. H., Minn, Y. K., Lee, J. Y., Choi, D. H., Chang, M. Y., Shim, J. W., Ko, J. Y., Koh, H. C., Kang, M. J., Kang, J. S., Rhie, D. J., Lee, Y. S., Son, H., Moon, S. Y., Kim, K. S. and Lee, S. H. (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem. 92, 1265-1276. https://doi.org/10.1111/j.1471-4159.2004.03006.x
  11. Park, C. H., Kang, J. S., Shin, Y. H., Chang, M. Y., Chung, S., Koh, H. C., Zhu, M. H., Oh, S. B., Lee, Y. S., Panagiotakos, G., Tabar, V., Studer, L. and Lee, S. H. (2006) Acquisition of in vitro and in vivo functionality of Nurr1-induced dopamine neurons. FASEB J. 20, 2553-2555. https://doi.org/10.1096/fj.06-6159fje
  12. Park, C. H., Kang, J. S., Yoon, E. H., Shim, J. W., Suh-Kim, H. and Lee, S. H. (2008) Proneural bHLH neurogenin 2 differentially regulates Nurr1-induced dopamine neuron differentiation in rat and mouse neural precursor cells in vitro. FEBS Lett. 582, 537-542. https://doi.org/10.1016/j.febslet.2008.01.018
  13. Park, C. H., Lim, M. S., Rhee, Y. H., Yi, S. H., Kim, B. K., Shim, J. W., Kim, Y. H., Jung, S. J. and Lee, S. H. (2012) In vitro generation of mature dopamine neurons by decreasing and delaying the expression of exogenous Nurr1. Development 139, 2447-2451. https://doi.org/10.1242/dev.075978
  14. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E. and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567-1572. https://doi.org/10.1038/nbt1037
  15. Singh, A. M., Reynolds, D., Cliff, T., Ohtsuka, S., Mattheyses, A. L., Sun, Y., Menendez, L., Kulik, M. and Dalton, S. (2012) Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 10, 312-326. https://doi.org/10.1016/j.stem.2012.01.014
  16. Sohn, C. H., Park, S. P., Choi, S. H., Park, S. H., Kim, S., Xu, L., Kim, S. H., Hur, J. A., Choi, J. and Choi, T. H. (2015) MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation. Nanomedicine 11, 127-135. https://doi.org/10.1016/j.nano.2014.08.003
  17. Thiel, G., Greengard, P. and Sudhof, T. C. (1991) Characterization of tissue-specific transcription by the human synapsin I gene promoter. Proc. Natl. Acad. Sci. U.S.A. 88, 3431-3435. https://doi.org/10.1073/pnas.88.8.3431
  18. Yamashita, T., Ninomiya, M., Hernandez Acosta, P., Garcia-Verdugo, J.M., Sunabori, T., Sakaguchi, M., Adachi, K., Kojima, T., Hirota, Y., Kawase, T., Araki, N., Abe, K., Okano, H. and Sawamoto, K. (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci. 26, 6627-6636. https://doi.org/10.1523/JNEUROSCI.0149-06.2006