DOI QR코드

DOI QR Code

Transglutaminase 2 Promotes Autophagy by LC3 Induction through p53 Depletion in Cancer Cell

  • Kang, Joon Hee (Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center) ;
  • Lee, Seon-Hyeong (Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center) ;
  • Cheong, Heesun (Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center) ;
  • Lee, Chang Hoon (College of Pharmacy, Dongguk University) ;
  • Kim, Soo-Youl (Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center)
  • Received : 2018.07.23
  • Accepted : 2018.08.08
  • Published : 2019.01.01

Abstract

Transglutaminase 2 (TGase 2) plays a key role in p53 regulation, depleting p53 tumor suppressor through autophagy in renal cell carcinoma. We found that microtubule-associated protein 1A/1B-light chain 3 (LC3), a hallmark of autophagy, were tightly associated with the level of TGase 2 in cancer cells. TGase 2 overexpression increased LC3 levels, and TGase 2 knockdown decreased LC3 levels in cancer cells. Transcript abundance of LC3 was inversely correlated with level of wild type p53. TGase 2 knockdown using siRNA, or TGase 2 inhibition using GK921 significantly reduced autophagy through reduction of LC3 transcription, which was followed by restoration of p53 levels in cancer cells. TGase 2 overexpression promoted the autophagy process by LC3 induction, which was correlated with p53 depletion in cancer cells. Rapamycin-resistant cancer cells also showed higher expression of LC3 compared to the rapamycin-sensitive cancer cells, which was tightly correlated with TGase 2 levels. TGase 2 knockdown or TGase 2 inhibition sensitized rapamycin-resistant cancer cells to drug treatment. In summary, TGase 2 induces drug resistance by potentiating autophagy through LC3 induction via p53 regulation in cancer.

Keywords

References

  1. Birgisdottir, A. B., Lamark, T. and Johansen, T. (2013) The LIR motif - crucial for selective autophagy. J. Cell Sci. 126, 3237-3247. https://doi.org/10.1242/jcs.126128
  2. Cao, J. and Huang, W. (2016) Compensatory increase of transglutaminase 2 is responsible for resistance to mTOR inhibitor treatment. PLoS ONE 11, e0149388. https://doi.org/10.1371/journal.pone.0149388
  3. Cao, L., Petrusca, D. N., Satpathy, M., Nakshatri, H., Petrache, I. and Matei, D. (2008) Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis 29, 1893-1900. https://doi.org/10.1093/carcin/bgn158
  4. Cheong, H., Lindsten, T. and Thompson, C. B. (2012a) Autophagy and ammonia. Autophagy 8, 122-123. https://doi.org/10.4161/auto.8.1.18078
  5. Cheong, H., Lu, C., Lindsten, T. and Thompson, C. B. (2012b) Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol. 30, 671-678. https://doi.org/10.1038/nbt.2285
  6. D'Eletto, M., Farrace, M. G., Falasca, L., Reali, V., Oliverio, S., Melino, G., Griffin, M., Fimia, G. M. and Piacentini, M. (2009) Transglutaminase 2 is involved in autophagosome maturation. Autophagy 5, 1145-1154. https://doi.org/10.4161/auto.5.8.10040
  7. D'Eletto, M., Farrace, M. G., Rossin, F., Strappazzon, F., Giacomo, G. D., Cecconi, F., Melino, G., Sepe, S., Moreno, S., Fimia, G. M., Falasca, L., Nardacci, R. and Piacentini, M. (2012) Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ. 19, 1228-1238. https://doi.org/10.1038/cdd.2012.2
  8. Folk, J. E. (1980) Transglutaminases. Annu. Rev. Biochem. 49, 517-531. https://doi.org/10.1146/annurev.bi.49.070180.002505
  9. Kang, J. H., Lee, J. S., Hong, D., Lee, S. H., Kim, N., Lee, W. K., Sung, T. W., Gong, Y. D. and Kim, S. Y. (2016) Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis. 7, e2163. https://doi.org/10.1038/cddis.2016.14
  10. Kang, S. K., Lee, J. Y., Chung, T. W. and Kim, C. H. (2004) Over-expression of transglutaminase 2 accelerates the erythroid differentiation of human chronic myelogenous leukemia K562 cell line through PI3K/Akt signaling pathway. FEBS Lett. 577, 361-366. https://doi.org/10.1016/j.febslet.2004.10.031
  11. Kim, D. S., Choi, Y. B., Han, B. G., Park, S. Y., Jeon, Y., Kim, D. H., Ahn, E. R., Shin, J. E., Lee, B. I., Lee, H., Hong, K. M. and Kim, S. Y. (2011) Cancer cells promote survival through depletion of the von Hippel-Lindau tumor suppressor by protein crosslinking. Oncogene 30, 4780-4790. https://doi.org/10.1038/onc.2011.183
  12. Kim, S. Y. (2011) Transglutaminase 2: a new paradigm for NF-kappaB involvement in disease. Adv. Enzymol. Relat. Areas Mol. Biol. 78, 161-195. https://doi.org/10.1002/9781118105771.ch4
  13. Ku, B. M., Kim, D. S., Kim, K. H., Yoo, B. C., Kim, S. H., Gong, Y. D. and Kim, S. Y. (2013) Transglutaminase 2 inhibition found to induce p53 mediated apoptosis in renal cell carcinoma. FASEB J. 27, 3487-3495. https://doi.org/10.1096/fj.12-224220
  14. Ku, B. M., Kim, S. J., Kim, N., Hong, D., Choi, Y. B., Lee, S. H., Gong, Y. D. and Kim, S. Y. (2014) Transglutaminase 2 inhibitor abrogates renal cell carcinoma in xenograft models. J. Cancer Res. Clin. Oncol. 140, 757-767. https://doi.org/10.1007/s00432-014-1623-5
  15. Lee, J., Kim, Y. S., Choi, D. H., Bang, M. S., Han, T. R., Joh, T. H. and Kim, S. Y. (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J. Biol. Chem. 279, 53725-53735. https://doi.org/10.1074/jbc.M407627200
  16. Munafo, D. B. and Colombo, M. I. (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci. 114, 3619-3629. https://doi.org/10.1242/jcs.114.20.3619
  17. Rabinowitz, J. D. and White, E. (2010) Autophagy and metabolism. Science 330, 1344-1348. https://doi.org/10.1126/science.1193497
  18. Scherz-Shouval, R., Weidberg, H., Gonen, C., Wilder, S., Elazar, Z. and Oren, M. (2010) p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc. Natl. Acad. Sci. U.S.A. 107, 18511-18516. https://doi.org/10.1073/pnas.1006124107
  19. Tasdemir, E., Chiara Maiuri, M., Morselli, E., Criollo, A., D'Amelio, M., Djavaheri-Mergny, M., Cecconi, F., Tavernarakis, N. and Kroemer, G. (2008a) A dual role of p53 in the control of autophagy. Autophagy 4, 810-814. https://doi.org/10.4161/auto.6486
  20. Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., Criollo, A., Morselli, E., Zhu, C., Harper, F., Nannmark, U., Samara, C., Pinton, P., Vicencio, J. M., Carnuccio, R., Moll, U. M., Madeo, F., Paterlini-Brechot, P., Rizzuto, R., Szabadkai, G., Pierron, G., Blomgren, K., Tavernarakis, N., Codogno, P., Cecconi, F. and Kroemer, G. (2008b) Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol. 10, 676-687. https://doi.org/10.1038/ncb1730
  21. Verma, A., Guha, S., Wang, H., Fok, J. Y., Koul, D., Abbruzzese, J. and Mehta, K. (2008) Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells. Clin. Cancer Res. 14, 1997-2005. https://doi.org/10.1158/1078-0432.CCR-07-1533
  22. White, E. (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401-410. https://doi.org/10.1038/nrc3262

Cited by

  1. The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression vol.7, pp.2, 2019, https://doi.org/10.3390/medsci7020019
  2. Advancing the Role of Gamma-Tocotrienol as Proteasomes Inhibitor: A Quantitative Proteomic Analysis of MDA-MB-231 Human Breast Cancer Cells vol.10, pp.1, 2020, https://doi.org/10.3390/biom10010019
  3. Inhibition of Transglutaminase 2 but Not of MDM2 Has a Significant Therapeutic Effect on Renal Cell Carcinoma vol.9, pp.6, 2019, https://doi.org/10.3390/cells9061475
  4. The Gαh/phospholipase C-δ1 interaction promotes autophagosome degradation by activating the Akt/mTORC1 pathway in metastatic triple-negative breast cancer vol.12, pp.13, 2020, https://doi.org/10.18632/aging.103390
  5. A transglutaminase 2-like gene from sea cucumber Apostichopus japonicus mediates coelomocytes autophagy vol.119, 2019, https://doi.org/10.1016/j.fsi.2021.11.003