참고문헌
- Trammell SA, Yu L, Redpath P, Migaud ME, Brenner C. Nicotinamide riboside is a major NAD+ precursor vitamin in cow milk. J Nutr 2016;146:957-63. https://doi.org/10.3945/jn.116.230078
- Belenky P, Racette FG, Bogan KL, McClure JM, Smith JS, Brenner C. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 2007;129:473-84. https://doi.org/10.1016/j.cell.2007.03.024
- Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 2004;117: 495-502. https://doi.org/10.1016/S0092-8674(04)00416-7
- Julius U. Niacin as antidyslipidemic drug. Can J Physiol Pharmacol 2015;93:1043-54. https://doi.org/10.1139/cjpp-2014-0478
- Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 2008;28:115-30. https://doi.org/10.1146/annurev.nutr.28.061807.155443
- Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem 2014;25:66-72. https://doi.org/10.1016/j.jnutbio.2013.09.004
-
Shima K, Zhu M, Kuwajima M. A role of nicotinamide-induced increase in pancreatic
${\beta}$ -cell mass on blood glucose control after discontinuation of the treatment in partially pancreatectomized OLETF rats. Diabetes Res Clin Pract 1998;41:1-8. https://doi.org/10.1016/S0168-8227(98)00061-8 - Knip M, Douek IF, Moore WP, Gillmor HA, McLean AE, Bingley PJ, Gale EA; European Nicotinamide Diabetes Intervention Trial Group. Safety of high-dose nicotinamide: a review. Diabetologia 2000;43: 1337-45. https://doi.org/10.1007/s001250051536
- Trammell SA, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, Li Z, Abel ED, Migaud ME, Brenner C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun 2016;7:12948. https://doi.org/10.1038/ncomms12948
-
Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J. The
$NAD^{+}$ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 2012;15:838-47. https://doi.org/10.1016/j.cmet.2012.04.022 -
Brown KD, Maqsood S, Huang JY, Pan Y, Harkcom W, Li W, Sauve A, Verdin E, Jaffrey SR. Activation of SIRT3 by the
$NAD^{+}$ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab 2014;20:1059-68. https://doi.org/10.1016/j.cmet.2014.11.003 - Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsstrom S, Pasila L, Velagapudi V, Carroll CJ, Auwerx J, Suomalainen A. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med 2014.6:721-31. https://doi.org/10.1002/emmm.201403943
- Trammell SA, Weidemann BJ, Chadda A, Yorek MS, Holmes A, Coppey LJ, Obrosov A, Kardon RH, Yorek MA, Brenner C. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci Rep 2016;6:26933. https://doi.org/10.1038/srep26933
- Gariani K, Menzies KJ, Ryu D, Wegner CJ, Wang X, Ropelle ER, Moullan N, Zhang H, Perino A, Lemos V, Kim B, Park YK, Piersigilli A, Pham TX, Yang Y, Ku CS, Koo SI, Fomitchova A, Canto C, Schoonjans K, Sauve AA, Lee JY, Auwerx J. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 2016;63:1190-204. https://doi.org/10.1002/hep.28245
- Lee HJ, Hong YS, Jun W, Yang SJ. Nicotinamide riboside ameliorates hepatic metaflammation by modulating NLRP3 inflammasome in a rodent model of type 2 diabetes. J Med Food 2015;18:1207-13. https://doi.org/10.1089/jmf.2015.3439
- Mukherjee S, Chellappa K, Moffitt A, Ndungu J, Dellinger RW, Davis JG, Agarwal B, Baur JA. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology 2017;65:616-30. https://doi.org/10.1002/hep.28912
-
Zhou CC, Yang X, Hua X, Liu J, Fan MB, Li GQ, Song J, Xu TY, Li ZY, Guan YF, Wang P, Miao CY. Hepatic
$NAD^{+}$ deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol 2016;173:2352-68. https://doi.org/10.1111/bph.13513 -
Stafeev IS, Menshikov MY, Tsokolaeva ZI, Shestakova MV, Parfyonova YV. Molecular mechanisms of latent inflammation in metabolic syndrome. possible role of sirtuins and peroxisome proliferatoractivated receptor type
$\gamma$ . Biochemistry (Mosc) 2015;80:1217-26. https://doi.org/10.1134/S0006297915100028 - Mendes KL, Lelis DF, Santos SH. Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev 2017;38:98-105. https://doi.org/10.1016/j.cytogfr.2017.11.001
- Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 2017;13:852-67. https://doi.org/10.7150/ijbs.19370
- Liu P, Huang G, Wei T, Gao J, Huang C, Sun M, Zhu L, Shen W. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 2018;1864:764-77. https://doi.org/10.1016/j.bbadis.2017.12.027
- Paulin R, Dromparis P, Sutendra G, Gurtu V, Zervopoulos S, Bowers L, Haromy A, Webster L, Provencher S, Bonnet S, Michelakis ED. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans. Cell Metab 2014;20:827-39. https://doi.org/10.1016/j.cmet.2014.08.011
-
Gleave JA, Arathoon LR, Trinh D, Lizal KE, Giguere N, Barber JH, Najarali Z, Khan MH, Thiele SL, Semmen MS, Koprich JB, Brotchie JM, Eubanks JH, Trudeau LE, Nash JE. Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant
$\alpha$ -synuclein rat model of parkinsonism. Neurobiol Dis 2017;106:133-46. https://doi.org/10.1016/j.nbd.2017.06.009 - Li Y, Ye Z, Lai W, Rao J, Huang W, Zhang X, Yao Z, Lou T. Activation of sirtuin 3 by silybin attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Front Pharmacol 2017;8:178.
- Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004;306: 2105-8. https://doi.org/10.1126/science.1101731
- Noriega LG, Feige JN, Canto C, Yamamoto H, Yu J, Herman MA, Mataki C, Kahn BB, Auwerx J. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep 2011;12:1069-76. https://doi.org/10.1038/embor.2011.151
-
Hayashida S, Arimoto A, Kuramoto Y, Kozako T, Honda S, Shimeno H, Soeda S. Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of
$PPAR{\alpha}$ in mice. Mol Cell Biochem 2010;339:285-92. https://doi.org/10.1007/s11010-010-0391-z -
Okazaki M, Iwasaki Y, Nishiyama M, Taguchi T, Tsugita M, Nakayama S, Kambayashi M, Hashimoto K, Terada Y.
$PPAR{\beta}/\delta$ regulates the human SIRT1 gene transcription via Sp1. Endocr J 2010;57:403-13. https://doi.org/10.1507/endocrj.K10E-004 -
Han L, Zhou R, Niu J, McNutt MA, Wang P, Tong T. SIRT1 is regulated by a
$PPAR{\gamma}$ -SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res 2010;38:7458-71. https://doi.org/10.1093/nar/gkq609 - Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, Scrable H. Phosphorylation regulates SIRT1 function. PLoS One 2008;3:e4020. https://doi.org/10.1371/journal.pone.0004020
- Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R, Bordone L. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 2009;4:e8414. https://doi.org/10.1371/journal.pone.0008414
- Guo X, Williams JG, Schug TT, Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010;285:13223-32. https://doi.org/10.1074/jbc.M110.102574
- Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, Bhalla K, Bai W. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007;9:1253-62. https://doi.org/10.1038/ncb1645
- Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007;28:277-90. https://doi.org/10.1016/j.molcel.2007.08.030
-
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-
$\gamma$ . Nature 2004;429:771-6. https://doi.org/10.1038/nature02583 - Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature 2008;451:583-6. https://doi.org/10.1038/nature06500
- Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008;451:587-90. https://doi.org/10.1038/nature06515
- Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012;13:225-38. https://doi.org/10.1038/nrm3293
- Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011;332:1519-23. https://doi.org/10.1126/science.1204265
-
Kinoshita T, Imamura R, Kushiyama H, Suda T. NLRP3 mediates NF-
${\kappa}B$ activation and cytokine induction in microbially induced and sterile inflammation. PLoS One 2015;10:e0119179. https://doi.org/10.1371/journal.pone.0119179 -
Tak PP, Firestein GS. NF-
${\kappa}B$ : a key role in inflammatory diseases. J Clin Invest 2001;107:7-11. https://doi.org/10.1172/JCI11830 - Lin X, Braymer HD, Bray GA, York DA. Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet-induced obesity. Life Sci 1998;63:145-53. https://doi.org/10.1016/S0024-3205(98)00250-1
- Lee HJ, Lim Y, Yang SJ. Involvement of resveratrol in crosstalk between adipokine adiponectin and hepatokine fetuin-A in vivo and in vitro. J Nutr Biochem 2015;26:1254-60. https://doi.org/10.1016/j.jnutbio.2015.06.001
- Begriche K, Igoudjil A, Pessayre D, Fromenty B. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 2006;6:1-28.
- Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J Neurochem 2012;120:419-29. https://doi.org/10.1111/j.1471-4159.2011.07581.x
- Ren J, Pulakat L, Whaley-Connell A, Sowers JR. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 2010;88:993-1001. https://doi.org/10.1007/s00109-010-0663-9
- Lopez-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol 2008;43:813-9. https://doi.org/10.1016/j.exger.2008.06.014
-
Austin S, St-Pierre J.
$PGC1{\alpha}$ and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012;125:4963-71. https://doi.org/10.1242/jcs.113662 - Goffart S, Wiesner RJ. Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 2003;88: 33-40. https://doi.org/10.1113/eph8802500
- Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006;27:728-35. https://doi.org/10.1210/er.2006-0037
-
Gong B, Pan Y, Vempati P, Zhao W, Knable L, Ho L, Wang J, Sastre M, Ono K, Sauve AA, Pasinetti GM. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-
$\gamma$ coactivator$1{\alpha}$ regulated${\beta}$ -secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models. Neurobiol Aging 2013;34:1581-8. https://doi.org/10.1016/j.neurobiolaging.2012.12.005 -
Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-
$1{\alpha}$ , a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011;93: 884S-890S. https://doi.org/10.3945/ajcn.110.001917 -
Aharoni-Simon M, Hann-Obercyger M, Pen S, Madar Z, Tirosh O. Fatty liver is associated with impaired activity of
$PPAR{\gamma}$ -coactivator$1{\alpha}$ ($PGC1{\alpha}$ ) and mitochondrial biogenesis in mice. Lab Invest 2011;91:1018-28. https://doi.org/10.1038/labinvest.2011.55 - Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006;116: 615-22. https://doi.org/10.1172/JCI27794
-
Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-
$\alpha$ . Int J Obes (Lond) 2005;29 Suppl 1:S5-9. https://doi.org/10.1038/sj.ijo.0802905
피인용 문헌
- Targeting sirtuin activity with nicotinamide riboside reduces neuroinflammation in a GWI mouse model vol.79, 2019, https://doi.org/10.1016/j.neuro.2020.04.006
- Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure vol.130, pp.11, 2019, https://doi.org/10.1172/jci138538
- NAD + metabolism: pathophysiologic mechanisms and therapeutic potential vol.5, 2019, https://doi.org/10.1038/s41392-020-00311-7
- Nicotinamide riboside reduces cardiometabolic risk factors and modulates cardiac oxidative stress in obese Wistar rats under caloric restriction vol.263, 2020, https://doi.org/10.1016/j.lfs.2020.118596
- Nicotinamide Riboside Enhances Endothelial Precursor Cell Function to Promote Refractory Wound Healing Through Mediating the Sirt1/AMPK Pathway vol.12, 2019, https://doi.org/10.3389/fphar.2021.671563