DOI QR코드

DOI QR Code

Survival, Hematologic and Histological Changes of File Fish Thamnaconus modestus Adult Exposed to Different Lower Temperature

저수온에 노출된 말쥐치 Thamnaconus modestus의 생존율, 혈액학적 및 조직학적 반응

  • Kim, Hae Jin (South East Sea Fisheries Research Institute, NIFS) ;
  • Lee, Hee-Jung (South East Sea Fisheries Research Institute, NIFS) ;
  • Kim, Won Jin (South East Sea Fisheries Research Institute, NIFS) ;
  • Shin, Yun Kyung (South East Sea Fisheries Research Institute, NIFS)
  • 김혜진 (국립수산과학원 남동해수산연구소) ;
  • 이희중 (국립수산과학원 남동해수산연구소) ;
  • 김원진 (국립수산과학원 남동해수산연구소) ;
  • 신윤경 (국립수산과학원 남동해수산연구소)
  • Received : 2019.10.14
  • Accepted : 2019.12.03
  • Published : 2019.12.31

Abstract

Temperature is one of the most important criteria considered in species preference for aquaculture. Acute drop in temperature during winter is a cause of disease and mass mortality in farmed fish. This study was carried out the low water temperature tolerance, oxygen consumption, hematologic and histological responses to use as basic data for the management of fish farming which frequently cause death due to winter water temperature drop. Low-lethal water temperature for 4 days of file fish Thamnaconus modestus (4day-LT50) was 6.97℃ (6.69~7.27℃). Oxygen consumption rate decreased with decreasing water temperature, showing a significant difference between water temperatures. SOD activity increased significantly at 6℃ experimental group than control group (10℃) (p<0.05), but CAT did not show any significant difference between experimental temperatures (p>0.05). Cortisol increased with decreasing experimental water temperature compared to control group. Histological changes in the liver include decreased blood vessels in the blood vessels, proliferation of acid cells, condensation of the nucleus, atrophy of pancreatic exocrine gland cells, and enzyme source granules.

수온은 양식어류의 생존에 영향을 미치는 가장 주요한 환경 요인이며, 겨울철 급작스런 수온 하강은 양식어류의 질병과 집단폐사 발생의 요인이 되기도 한다. 본 연구는 겨울철 수온 하강으로 인해 빈번하게 폐사가 발생하고 있는 말쥐치의 양식관리를 위한 기초자료로 활용하기 위해 말쥐치의 하한수온내 성범위, 산소소비율, 혈액학적 및 조직학적 반응을 조사하였다. 수온 5℃에서 노출 3일째, 수온 6℃에서는 노출 4일째 모두 폐사하여 말쥐치의 저수온에 대한 반수치사 하한수온은(LT50) 6.97℃ (6.69~7.27℃)였다. 산소소비율은 수온 하강에 따라 감소하여 수온 간 유의한 차이(p<0.05)를 나타내었다. 혈액내 활성산소 소거효소인 SOD활성도는 대조구 10℃에 비해 수온 6℃에서 유의하게 상승하였다(p<0.05). 반면 CAT는 실험수온 간에 유의한 변화를 나타내지 않았다(p>0.05), 삼투질농도는 대조구와 실험수온 간 유의한 차이는 나타나지 않았다(p>0.05). 코티졸은 대조구에 비해 수온 하강에 따라 증가하였으며 수온 간 유의한 차이를 나타내었다(p<0.05). 간의 조직학적 변화는 혈관내 혈구의 감소, 간세포의 공포화와 간세포 핵의 응축, 췌장 외분비 선세포의 위축 및 효소원과립들이 감소하였다.

Keywords

References

  1. Baik, C.I. and J.H. Park. 1989. Fluctuation of fishing conditions of file fish Navidon modestus (Gunther) in relation to oceanographic characteristics in Korean eaters. NIFS, 43: 91-104. (in Korean)
  2. Barton, B.A. 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol., 42: 517-525. https://doi.org/10.1093/icb/42.3.517
  3. Bellgraph, B.J., G.A. McMichael, R.P. Mueller and J.L. Monroe. 2010. Behavioural response of juvenile Chinook salmone Oncorhynchus tshawytscha during sudden temperature increase and implications for survivor. J. Therm. Biol., 35: 6-10. https://doi.org/10.1016/j.jtherbio.2009.10.001
  4. Beitinger, T.L. and W.A. Bennet. 2000. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environ. Biol. Fishes, 58: 277-288. https://doi.org/10.1023/A:1007618927527
  5. Bicego, K.C., R.C.H. Barros and L.G.S. Branco. 2007. Physiology of temperature regulation: comparative aspects. Comp. Biochem. Physiol., 147A: 616-639.
  6. Chandra, J., A. Samali and S. Orrenius. 2000. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med., 3: 323-333. https://doi.org/10.1016/S0891-5849(87)80040-0
  7. Chen, W., L. Sun, C. Tsai, Y. Song and C. Chang. 2002. Cold stress induced the modulation of catecholamines, cotrisol, imunoglobulin M. and leukocyte phagocytosis in tilapia. Gen. Comp. Endocrinol., 126: 90-100. https://doi.org/10.1006/gcen.2001.7772
  8. Choi, S.H. and C.S. Park. 1982. Maturity and spawning of file fish Navidon modestus (Gunther) in the southern waters of Korea. NIFS, 30: 73-80. (in Korean)
  9. Contessi, B., D. Volpatti, L. Gusmani and M. Galeotti. 2006. Evaluation of immunological parameters in farmed gilthead sea bream, Sparus aurata L., before and during out breaks of "winter syndrome". J. Fish Dis., 29: 683-690. https://doi.org/10.1111/j.1365-2761.2006.00765.x
  10. Crawshaw, L.I. 1977. Physiological and behavioral reactions of fish to temperature change. J. Fish Res. Board. Can., 34: 730-734. https://doi.org/10.1139/f77-113
  11. Dalvi, R.S., A.K. Pal, L.R. Tiwari, T. Das and K. Baruah. 2009. Thermal tolerance and oxygen consumption rates of the catfish Horabagrus brachysoma (Gunther) acclimated to different temperatures. Aquaculture, 295: 116-119. https://doi.org/10.1016/j.aquaculture.2009.06.034
  12. Debnath, D., A.K. Pal, N.P. Sahy, K. Baruah, S. Yengkokpam, T. Das and S. Manush. 2006. Thermal tolerance and metabolic activity of yellowtai catfish Pangasius pangasius (Hamilton) advances fingerlings with emphasis on their culture potential. Aquaculture, 258: 606-610. https://doi.org/10.1016/j.aquaculture.2006.04.037
  13. Dejours, P. 1981. Factors of energy expenditure. Principles of Comparative respiratory physiology. Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands, pp. 1-13.
  14. Donaldson, M.R., S.J. Cooke, D.A. Patterson and J.S. MacDonald. 2008. Cold shock and fish. J. Fish Biol., 73: 1491-1530. https://doi.org/10.1111/j.1095-8649.2008.02061.x
  15. Finney, D.J. 1971. Probit Analysis. 3rd. Cambridge University Press, London, 333pp.
  16. Fuiman, L.A. and R.S. Batty. 1997. What a drag is getting cold: Partitioning the physical and physiological effects of temperature on fish swimming. J. Exp. Biol., 200: 1745-1755. https://doi.org/10.1242/jeb.200.12.1745
  17. Gallardo, M.A., M. Sala-Rabanal, A. Ibaez, F. Padros, J. Blasco, J. Fernandz-Borras and J. Sanchez. 2003. Functional alternations associated with “winter syndrome” in gilthead sea bream (Sparus aurata). Aquaculture, 223: 15-27. https://doi.org/10.1016/S0044-8486(03)00164-9
  18. Gonzalez, R.A., D. Fernando, L. Alexei, D.R. Ana, L.N. Sanchez and G.E. Zaul. 2010. Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures. J. Therm. Biol., 35: 218-224. https://doi.org/10.1016/j.jtherbio.2010.05.004
  19. Gwak, W.S. and S.G. Lee. 2009. Developmental changes in digestive organ and digestive enzyme activity of file fish Thamnaconus modestus. Korean J. Ichthyol., 21: 149-157. (in Korean)
  20. Hazel, J.R. and C.L. Prosser. 1974. Molecular mechanisms of temperature compensation on poikilotherms. Ohysiol. Rev., 54: 620-677. https://doi.org/10.1152/physrev.1974.54.3.620
  21. Inoue, L.A., G. Moraes, G.K. Iwana and L.O.B. Afonso. 2008. Physiological stress responses in the warm-water fish matrinxa (Brycon amazonicus) subjected to a sudden cold shock. Acta Amazon, 38: 603-610. https://doi.org/10.1590/S0044-59672008000400002
  22. Lee, S.J., H.D. Ku, B.C. Lee and J.M. Lee. 2000. Technical development on seed production of file fish, National Fisheries Research and Development Institute, 1999. Technical report of east sea regional fisheries research institute, pp. 292-294. (in Korean)
  23. Mazeaud, M.M., F. Mazeaud and E.M. Donaldson. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Trans. Am. Fish. Soc., 106: 201-212. https://doi.org/10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2
  24. Meng, X., P. Liu, J. Li, B. Gao and P. Chen. 2014. Physiological responses of swimming crab Portunus tributerculatus under cold acclimation: Antioxidant defense and heat shock proteins. Aquaculture, 434: 11-17. https://doi.org/10.1016/j.aquaculture.2014.07.021
  25. MERI. 2000. Report of marine ecology research institute. 2: A-17, A-23.
  26. Nam, K.M., J.T. Yoo, J.W. Kim, J.H. Park and G.W. Baeck. 2018. Maturation and spawning of female black scraper, Thamnaconus modestus in the coastal waters off middle east sea, Korea. J. Korean Soc. Fish Ocean Techanol., 54: 89-95. https://doi.org/10.3796/KSFOT.2018.54.1.089
  27. Park, B.H. 1985. Studies on the fishery biology of file fish, Navidon modestus (Gunther) in the Korean waters. NIFS, 34: 1-64. (in Korean)
  28. Prosser, C.L. and J.E. Heath. 1991. Temperature. In: Prosser, C.L. (ed.), Environmental and Metabolic Animal Physiology. Wiley-Liss, New York, pp. 109-165.
  29. Qi, Z., Y. Liu, S. Luo, C. Chen, Y. Liu and W. Wang. 2013. Molecular cloning, characterization and expression analysis of tumor suppressor protein p53 from orange-spotted grouper, Epinephelus coioides in response to temperature stress. Fish Shellfish Immun., 35: 1466-1476. https://doi.org/10.1016/j.fsi.2013.08.011
  30. Qiang, J., H. Yang, H. Wang, M.D. Kpundeh and P. Xu. 2012. Growth and IGF-I response of juvenile Nile tilapia (Oreochromis niloticus) to changes in water temperature and dietary protein level. J. Therm. Biol., 37: 686-695. https://doi.org/10.1016/j.jtherbio.2012.07.009
  31. Rajaguru, S. and S. Ramachandran. 2001. Temperature tolerance of some estuarine fishes. J. Thermal Biol., 26: 41-45. https://doi.org/10.1016/S0306-4565(00)00024-3
  32. Salvato, B., V. Cuomo, R. Di Muro and M. Beltramini. 2001. Effects of environmental parameters on the oxygen consumption of four marine invertebrates: a comparative factorial study. Mar. Biol., 138: 659-668. https://doi.org/10.1007/s002270000501
  33. Sharama, J., S.P. Singh and R. Chakrabarti. 2017. Effect of temperature on digestive physiology, immune-modulatory parameters and expression level of Hsp and LDH genes in Catla catla (Hamilton, 1822). Aquaculture, 479: 134-141. https://doi.org/10.1016/j.aquaculture.2017.05.031
  34. Shin, Y.K., Y.D. Kim and W.J. Kim. 2018. Survival and physiological responses of red sea bream Pagrus major with decreasing sea water temperature. Korean J. Ichthyol., 30: 131-136. (in Korean). https://doi.org/10.35399/ISK.30.3.1
  35. Smith, M.A. and W.A. Hubert. 2003. Simulated thermal tempering versus sudden temperature change and short-term survival of fingerling rainbow trout. N. Am. J. Aquacul., 65: 67-69. https://doi.org/10.1577/1548-8454(2003)065<0067:STTVST>2.0.CO;2
  36. Song, H., Xu. Dongdong, L. Tian, R. Chen, L. Wang, P. Tan and Q. You. 2019. Overwinter mortality in yellow drum (Nibea albiflora): Insights from growth and immune responses to cold and starvation stress. Fish and Shellfish Immunol., 92: 341-347. https://doi.org/10.1016/j.fsi.2019.06.030
  37. Stanley, J.G. and P.J. Colby. 1971. Effects of temperature on electrolyte balance and osmoregulation in the alewife (Alosa pseudoharengus) in fresh and sea water. Trans. Am. Fish Soc., 100: 624-638. https://doi.org/10.1577/1548-8659(1971)100<624:EOTOEB>2.0.CO;2
  38. Wedemeyer, G.R., F.P. Meyer and L. Smith. 1999. Environmental Stress and Fish diseases. Narendra Publishing House, Delhi, India, 107pp.
  39. Zarejabad, A.M., M. Sudagar, S. Pouralimotlagh and K.D. Bastami. 2010. Effects of rearing temperature on hematological and biochemical parameters of great sturgeon (Huso huso Linnaeus, 1758) juvenile. Comp. Clin. Pathol., 19: 367-371. https://doi.org/10.1007/s00580-009-0880-1