DOI QR코드

DOI QR Code

TBM 운전조건을 고려한 스포크형 쉴드TBM의 굴진모사 연구

Study on Driving Simulation of Spoke-type Shield TBM Considering Operation Conditions

  • 최순욱 (한국건설기술연구원 인프라안전연구본부) ;
  • 이효범 (고려대학교 건축사회환경공학부) ;
  • 최항석 (고려대학교 건축사회환경공학부) ;
  • 장수호 (한국건설기술연구원 건설산업진흥본부) ;
  • 강태호 (한국건설기술연구원 인프라안전연구본부) ;
  • 이철호 (한국건설기술연구원 인프라안전연구본부)
  • Choi, Soon-Wook (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Hyobum (School of Civil Environmental and Architectural Engineering, Korea University) ;
  • Choi, Hangseok (School of Civil Environmental and Architectural Engineering, Korea University) ;
  • Chang, Soo-Ho (Construction Industry Promotion Department, Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Tae-Ho (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Chulho (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2019.11.11
  • 심사 : 2019.11.26
  • 발행 : 2019.12.31

초록

본 연구에서는 개별요소법을 사용하여 스포크형 쉴드TBM의 굴진을 모사하였다. 지반에 대해 수평응력계수를 사용하여 깊이에 따른 수평응력 증가를 모사하였고 TBM의 커터헤드에서 발생하는 토크를 기준으로 운전 조건을 부여하여 운전 범위 내에서 굴진을 하도록 설정하였다. 즉, 커터헤드에서 발생하는 토크의 값이 주어진 운전 조건을 넘어서는 경우 굴진속도를 일정하게 줄이고 반대로 운전 조건보다 낮은 경우에는 굴진 속도를 높이는 방안을 고려하였다. 이때 굴진속도 변경에는 운전자의 검토 시간을 고려하여 최소 변경 가능 요건을 부여하고 굴진 조건에 따라 이를 변경 가능하도록 하였다. 이러한 조건을 사용하기 위하여 사용자 프로그램을 별도로 작성하였으며, 결과를 통해 사전에 입력한 운전 범위 내에서 굴진 해석이 가능하였다.

In this study, the discrete element method was used to simulate the excavation of spoke-type shield TBM. The horizontal stress coefficient was used for the ground to simulate the increase of the horizontal stress according to the depth, and the driving conditions were set based on the torque generated from the cutterhead of the TBM to excavate within the operating range. That is, when the value of the torque generated at the cutterhead exceeds the given operating condition, the speed of excavation is constantly reduced, and conversely, the method of increasing the speed of excavation is considered. The change speed of the excavation was given the minimum change requirement in consideration of the driver's review time, and the change was possible according to the excavation conditions. In order to use these conditions, the user-subroutine was considered separately, and the results show that the DEM model were able to analyze the excavation within the considered operating range.

키워드

참고문헌

  1. Amoun, S., Sharifzadeh, M., Shahriar, K., Rostami, J. and Azali, S. T., 2017, Evaluation of tool wear in EPB tunneling of Tehran Metro, Line 7 Expansion, Tunnelling and Underground Space Technology, 61, 233-246. https://doi.org/10.1016/j.tust.2016.11.001
  2. Avunduk, E. and Copur, H., 2018, Empirical modeling for predicting excavation performance of EPB TBM based on soil properties, Tunnelling and Underground Space Technology, 71, 340-353. https://doi.org/10.1016/j.tust.2017.09.016
  3. Bandini, A., Berry, P., Cormio, C., Colaiori, M. and Lisardi, A., 2017, Safe excavation of large section tunnels with Earth Pressure Balance Tunnel Boring Machine in gassy rock masses: The Sparvo tunnel case study, Tunnelling and Underground Space Technology, 67, 85-97. https://doi.org/10.1016/j.tust.2017.05.001
  4. Choi, S-W., Park, B., Kang, T-H., Chang, S-H., Lee, C., 2018, Numerical Study on Medium-Diameter EPB Shield TBM by Discrete Element Method, Journal of the Korean Geosynthetics Society, 17(4), 129-139. (in Korean) https://doi.org/10.12814/JKGSS.2018.17.4.129
  5. Copur, H., Aydin, H., Bilgin, N., Balci, C., Tumac, D. and Dayanc, C., 2014, Predicting performance of EPB TBMs by using a stochastic model implemented into a deterministic model, Tunnelling and Underground Space Technology, 42, 1-14. https://doi.org/10.1016/j.tust.2014.01.006
  6. Gharahbagh, E. A., Mooney, M. A., Frank, G., Walter, B. and Di Ponio, M. A., 2013, "Periodic inspection of gauge cutter wear on EPB TBMs using cone penetration testing", Tunnelling and Underground Space Technology, 38, 279-286. https://doi.org/10.1016/j.tust.2013.07.013
  7. KICT., 2015, Development of optimized TBM cutterhead design method and high-performance disc cutter, Publication No. ISBN 979-11-954377-2-6, Korea Agency for Infrastructure Technology Advancement, Anyang-si, Republic of Korea. (in Korean)
  8. Kim, J. Y., Jeon, B. G., Chae, J. G., Lee, M. W., Kim, S. H. and Kitahara, Y., 2015, Shield TBM excavation method, Trans, Seoul: CIR publishing.
  9. Lee, C., Chang, S. H., Choi, S. W., Park, B., Kang, T. H., Sim, J. K., 2017a, Preliminary study on a spoke-type EPB shield TBM by discrete element method, Journal of Korean Tunnelling and Underground Space Association, 19(6), 1029-1044. (in Korean) https://doi.org/10.9711/KTAJ.2017.19.6.1029
  10. Lee, C., Chang, S. H., Choi, S. W., Park, B., Kang, T. H., Sim, J. K., 2017b, Numerical Study of Face Plate-Type EPB Shield TBM by Discrete Element Method, Journal of the Korean Geosynthetics Society, 16(4), 163-176. (in Korean) https://doi.org/10.12814/JKGSS.2017.16.4.163
  11. Li, X., Yuan, D., Huang, Q., 2017, Cutterhead and cutting tools configurations in coarse grain soils, The Open Construction and Building Technology Journal, 11(1), 182-199. https://doi.org/10.2174/1874836801711010182
  12. Maidl, U. and Comulada, M., 2011, Prediction of EPB shield performance in soils, Proc. of the In Rapid Excavation and Tunneling Conference, January 2011, 1083-1091.
  13. Maynar, M. J. and Rodriguez, L. E., 2005, Discrete numerical model for analysis of earth pressure balance tunnel excavation, Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1234-1242. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1234)
  14. Mindlin, R. D., and H. Deresiewicz., 1953, Elastic Spheres in Contact under Varying Oblique Forces, J. Appl. Mech., 20, 327-344. https://doi.org/10.1115/1.4010702
  15. Peila, D., Picchio, A. and Chieregato, A., 2013, Earth pressure balance tunnelling in rock masses: Laboratory feasibility study of the conditioning process, Tunnelling and Underground Space Technology, 35, 55-66. https://doi.org/10.1016/j.tust.2012.11.006
  16. Shi, H., Yang, H., Gong, G., Wang, L., 2011, Determination of the cutterhead torque for EPB shield tunneling machine. Automation in Construction, 20(8), 1087-1095. https://doi.org/10.1016/j.autcon.2011.04.010
  17. Wu, L., Guan, T., Lei, L., 2013, Discrete element model for performance analysis of cutterhead excavation system of EPB machine, Tunnelling and Underground Space Technology, 37, 37-44. https://doi.org/10.1016/j.tust.2013.03.003
  18. Wu, L., Liu, C., 2014, Modeling of shield machine tunneling experiment by discrete element method, Applied Mechanics and Materials, 556-562, 1200-1204. https://doi.org/10.4028/www.scientific.net/AMM.556-562.1200