DOI QR코드

DOI QR Code

Rate of Probe Vehicles for the Collection of Traffic Information on Expressways

고속도로 교통정보 취득을 위한 프루브 차량 비율 산정 연구

  • Kim, Jiwon (Dept. of Transportation Eng., Ajou University) ;
  • Jeong, Harim (Dept. of Transportation System Eng., Ajou University) ;
  • Kang, Sungkwan (Construction Div. Korea Expressway Corporation) ;
  • Yun, Ilsoo (Dept. of Transportation System Eng., Ajou University)
  • 김지원 (아주대학교 교통공학과) ;
  • 정하림 (아주대학교 교통공학과) ;
  • 강성관 (한국도로공사 건설처) ;
  • 윤일수 (아주대학교 교통시스템공학과)
  • Received : 2019.11.03
  • Accepted : 2019.12.24
  • Published : 2019.12.31

Abstract

The purpose of this study is to estimate the minimum proportion of probe vehicles for obtaining expressway traffic information using VISSIM, a micro traffic simulation model, between Yongin IC and Yangji IC on Yeongdong Expressway. 7,200 scenarios were created for the experiment, and 40 scenarios were adopted using the Latin hypercube sampling method because it was difficult to perform all the scenarios through experiments. The reliability of the experiment was improved by adding a situation when the general situation and the accident situation exist. In the experiments, the average travel time of probe vehicles at different market penetration rates were compared with the average travel time of the entire vehicles. As a result, the minimum market penetration rate of probe vehicles for obtaining expressway traffic information was found to be 45%. In addition, it is estimated that 25% market penetration rate of probe vehicle can meet 70% of traffic situations in accident scenario.

본 연구에서는 영동 고속도로 용인IC ~ 양지IC 구간을 대상으로 미시교통시뮬레이션 모형인 VISSIM을 이용하여 고속도로 교통정보 취득을 위한 프루브 차량 최소 비율을 추정하고자 한다. 실험을 위하여 일반상황과 유고상황을 고려한 7,200 가지의 시나리오를 생성하였다. 하지만, 모든 시나리오를 실험을 통해 수행하기에는 어려움이 있어 라틴 하이퍼큐브 샘플링(Latin Hypercube sampling) 방법을 사용하여 40 가지의 시나리오를 채택하였다. 이를 통해 얻은 개별차량의 1초당 데이터를 얻어 프루브 차량 비율을 세분화하여 평균통행시간 분포를 통계적으로 비교 분석 해본 결과 일반 상황에서는 고속도로 교통정보 취득을 위한 프루브 차량의 최소 비율이 1%였고 유고상황에서는 45%로 산정되었다. 또한 시나리오 분석 결과 25%의 프루브 차량 정보를 가지고 유고상황 시나리오 교통상황 중 70%를 충족시킬 수 있는 것으로 확인되었다.

Keywords

References

  1. Do C. W.(2014), Principles of Traffic Engineering, Chung Moon Kak.
  2. Hong S. P., Oh C., Kim W. K., Kim H. M. and Kim T. H.(2008), "Designing a V2V based Traffic Surveillance System and ITS Functional Requirements," Journal of Korean Society of Transportation, vol. 26, no. 4, pp.251-264.
  3. Jean A. C., Christofa E. and Skabardonis A.(2015), "Connected Vehicle Penetration Rate for Estimation of Arterial Measures of Effectiveness," Transportation Research Part C, vol. 60, pp.298-312. https://doi.org/10.1016/j.trc.2015.08.013
  4. Kim J. Y. and Kim J. T.(2016), "Analysis of the effect on Road Network with Communication Failure Rate of C-ITS Information System for Rear-end Collision Avoidance," Journal of the Korea Institute of Intelligent Transport Systems, vol. 15, no. 5, pp.71-82. https://doi.org/10.12815/kits.2016.15.5.071
  5. Ko S. Y.(2002), "A Model Development of Probe Cars for Travel Time Data Collection," Journal of Korean Society of Transportation, vol. 20, no. 4, pp.177-185.
  6. Kwon S. H.(2001), Basic Statistic Analysis, Freeacademy.
  7. Lee Y. J., Hwang J. S. and Lee C. K.(2016), "Study on Queue Length Estimation sing GPS Trajectory Data," Journal of the Korea Institute of Intelligent Transport Systems, vol. 15, no. 3, pp.45-51. https://doi.org/10.12815/kits.2016.15.3.045
  8. Mease D. and Bingham D.(2006), "Latin Hyper Rectangle Sampling for Computer Experiments," Technometrics, vol. 48, pp.467-477. https://doi.org/10.1198/004017006000000101
  9. Na S. Y., Lee S. J., Ahn S. H. and Kim J. Y.(2018), "A Study on the Estimation of the V2 X-Rate Ratio for the Collection of Highway Traffic Information," Journal of the Korea institute of intelligent transport systems, vol. 17, no. 1, pp.71-78. https://doi.org/10.12815/kits.2018.17.1.71
  10. Yoon T. K.(2018), "Effective Introduction of Next-generation Advanced Transportation System for Smart City," Krish Policy Brief, no. 666.

Cited by

  1. 신호교차로 대기행렬 내 프로브 차량의 위치 정보를 활용한 다차로 접근로에서의 프로브 차량 비율 추정 vol.41, pp.2, 2019, https://doi.org/10.12652/ksce.2021.41.2.0133