DOI QR코드

DOI QR Code

Clinical Applications of Bioactive Milk Components: A Review

우유 생리활성 물질의 임상적 적용

  • Han, Rae Hee (Dept. of Animal Science and Technology, Chung-Ang University) ;
  • Yoon, Sung Hee (Dept. of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Geun-Bae (Dept. of Animal Science and Technology, Chung-Ang University)
  • 한래희 (중앙대학교 동물생명공학과) ;
  • 윤성희 (중앙대학교 동물생명공학과) ;
  • 김근배 (중앙대학교 동물생명공학과)
  • Received : 2019.08.29
  • Accepted : 2019.09.27
  • Published : 2019.09.30

Abstract

Milk contains essential nutrients and functional compounds, such as calcium, fat-soluble vitamins A, D, E, and K, carotenoids, bioactive peptides, and sphingolipids. The bioactive molecules from milk are not expensive and have an added advantage of being derived from food. Therefore, they are more stable and have a broader spectrum than that of other chemicals. Bioactive milk components are useful for treating non-digestive tract disorders, such as cancer, cognitive decline, and hypertension. However, the clinical application of certain breast milk ingredients is limited due to the lack of a large-scale production technology. Once the scaled-up production of lactoferrin became possible, clinical applications were devised and evaluated. Similarly, human alpha-lactalbumin made lethal to tumor cells (HAMLET) can be produced on a large scale as a recombinant protein in microorganisms or in transgenic cattle using suitable separation systems. HAMLET can be used to treat human skin papilloma and cancer. Studies on breast milk that explored the clinical applications of the bioactive components of breast milk have spurred the development of translational medicine and breast milk-derived therapeutics. Some breast-milk derived therapeutic agents are already available to clinicians. Many components of breast milk have shown efficacy in pre-clinical studies and have valid clinical evaluations.

Keywords

References

  1. Nanthakumar N, Meng D, Goldstein AM, Zhu W, Lu L, Uauy R, et al. The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: an immature innate immune response. PLoS One. 2011;6:e17776. https://doi.org/10.1371/journal.pone.0017776
  2. Klement E, Cohen RV, Boxman J, Joseph A, Reif S. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am J Clin Nutr. 2004;80:1342-1352. https://doi.org/10.1093/ajcn/80.5.1342
  3. Berlutti F, Pantanella F, Natalizi T, Frioni A, Paesano R, Polineni A, et al. Antiviral properties of lactoferrin: a natural immunity molecule. Molecules. 2011;16:6992-7018. https://doi.org/10.3390/molecules16086992
  4. Brock JH. Lactoferrin: 50 years on. Biochem Cell Biol. 2012;90:245-251. https://doi.org/10.1139/o2012-018
  5. Hill DR, Newburg DS. Clinical applications of bioactive milk components. Nutr Rev. 2015;73:463-476. https://doi.org/10.1093/nutrit/nuv009
  6. Tawfeek HI, Najim NH, Al-Mashikhi S. Efficacy of an infant formula containing anti-Escherichia coli colostral antibodies from hyperimmunized cows in preventing diarrhea in infants and children: a field trial. Int J Infect Dis. 2003;7:120-128. https://doi.org/10.1016/S1201-9712(03)90007-5
  7. Otto W, Najnigier B, Stelmasiak T, Robins-Browne RM. Randomized control trials using a tablet formulation of hyperimmune bovine colostrum to prevent diarrhea caused by enterotoxigenic Escherichia coli in volunteers. Scand J Gastroenterol. 2011;46:862-868. https://doi.org/10.3109/00365521.2011.574726
  8. Ochoa TJ, Chea-Woo E, Baiocchi N, Pecho I, Campos M, Prada A, et al. Randomized double-blind controlled trial of bovine lactoferrin for prevention of diarrhea in children. J Pediatr. 2013;162:349-356. https://doi.org/10.1016/j.jpeds.2012.07.043
  9. Laffan AM, McKenzie R, Forti J, Conklin D, Marcinko R, Shrestha R, et al. Lactoferrin for the prevention of post-antibiotic diarrhoea. J Health Popul Nutr. 2011;29:547-51.
  10. Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. J Am Med Assoc. 2009;302:1421-1428. https://doi.org/10.1001/jama.2009.1403
  11. Manzoni P, Stolfi I, Messner H, Cattani S, Laforgia N, Romeo MG, et al. Bovine lactoferrin prevents invasive fungal infections in very low birth weight infants: a randomized controlled trial. Pediatrics. 2012;129:116-123. https://doi.org/10.1542/peds.2011-0279
  12. Guntupalli K, Dean N, Morris PE, Bandi V, Margolis B, Rivers E, et al. A phase 2 randomized, double-blind, placebo-controlled study of the safety and efficacy of talactoferrin in patients with severe sepsis. Crit Care Med. 2013;41:706-716. https://doi.org/10.1097/CCM.0b013e3182741551
  13. de Bortoli N, Leonardi G, Ciancia E, Merlo A, Bellini M, Costa F, et al. Helicobacter pylori eradication: a randomized prospective study of triple therapy versus triple therapy plus lactoferrin and probiotics. Am J Gastroenterol. 2007;102:951-956. https://doi.org/10.1111/j.1572-0241.2007.01085.x
  14. Kaito M, Iwasa M, Fujita N, Kobayashi Y, Kojima Y, Ikoma J, et al. Effect of lactoferrin in patients with chronic hepatitis C: combination therapy with interferon and ribavirin. J Gastroenterol Hepatol. 2007;22:1894-1897. https://doi.org/10.1111/j.1440-1746.2007.04858.x
  15. Parente F, Cucino C, Anderloni A, Grandinetti G, Bianchi Porro G. Treatment of Helicobacter pylori infection using a novel antiadhesion compound (3'sialyllactose sodium salt). A double blind, placebo-controlled clinical study. Helicobacter. 2003;8:252-256. https://doi.org/10.1046/j.1523-5378.2003.00152.x
  16. Edde L, Hipolito RB, Hwang FF, Headon DR, Shalwitz RA, Sherman MP. Lactoferrin protects neonatal rats from gut-related systemic infection. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1140-G1150. https://doi.org/10.1152/ajpgi.2001.281.5.G1140
  17. King JC Jr, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V, et al. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr. 2007;44:245-251. https://doi.org/10.1097/01.mpg.0000243435.54958.68
  18. Zavaleta N, Figueroa D, Rivera J, Sanchez J, Alfaro S, Lonnerdal B. Efficacy of rice-based oral rehydration solution containing recombinant human lactoferrin and lysozyme in Peruvian children with acute diarrhea. J Pediatr Gastroenterol Nutr. 2007;44:258-64. https://doi.org/10.1097/MPG.0b013e31802c41b7
  19. Vitetta L, Coulson S, Beck SL, Gramotnev H, Du S, Lewis S. The clinical efficacy of a bovine lactoferrin/whey protein Ig-rich fraction (Lf/IgF) for the common cold: a double blind randomized study. Complement Ther Med. 2013;21:164-171. https://doi.org/10.1016/j.ctim.2012.12.006
  20. Tung YT, Chen HL, Yen CC, Lee PY, Tsai HC, Lin MF, et al. Bovine lactoferrin inhibits lung cancer growth through suppression of both inflammation and expression of vascular endothelial growth factor. J Dairy Sci. 2013;96:2095-2106. https://doi.org/10.3168/jds.2012-6153
  21. Digumarti R, Wang Y, Raman G, Doval DC, Advani SH, Julka PK, et al. A randomized, double-blind, placebo-controlled, phase II study of oral talactoferrin in combination with carboplatin and paclitaxel in previously untreated locally advanced or metastatic non-small cell lung cancer. J Thorac Oncol. 2011;6:1098-1103. https://doi.org/10.1097/JTO.0b013e3182156250
  22. Kozu T, Iinuma G, Ohashi Y, Saito Y, Akasu T, Saito D, et al. Effect of orally administered bovine lactoferrin on the growth of adenomatous colorectal polyps in a randomized, placebo-controlled clinical trial. Cancer Prev Res. 2009;2:975-983. https://doi.org/10.1158/1940-6207.CAPR-08-0208
  23. Sun X, Jiang R, Przepiorski A, Reddy S, Palmano KP, Krissansen GW. "Ironsaturated" bovine lactoferrin improves the chemotherapeutic effects of tamoxifen in the treatment of basal-like breast cancer in mice. BMC Cancer. 2012;12:591. https://doi.org/10.1186/1471-2407-12-591
  24. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2000;71:1589-96. https://doi.org/10.1093/ajcn/71.6.1589
  25. Bode L. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr. 2006;136:2127-2130. https://doi.org/10.1093/jn/136.8.2127
  26. Newburg DS, Walker WA. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res. 2007;61:2-8. https://doi.org/10.1203/01.pdr.0000250274.68571.18
  27. Crane JK, Azar SS, Stam A, Newburg DS. Oligosaccharides from human milk block binding and activity of the Escherichia coli heat-stable enterotoxin (STa) in T84 intestinal cells. J Nutr. 1994;124:2358-2364. https://doi.org/10.1093/jn/124.12.2358
  28. Atochina O, Harn D. LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. Clin Diagn Lab Immunol. 2005;12:1041-1049. https://doi.org/10.1128/CDLI.12.9.1041-1049.2005
  29. Terrazas LI, Walsh KL, Piskorska D, McGuire E, Harn DA Jr. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J Immunol. 2001;167:5294-5303. https://doi.org/10.4049/jimmunol.167.9.5294
  30. Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, et al. Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr Res. 2004;56:536-540. https://doi.org/10.1203/01.PDR.0000139411.35619.B4
  31. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22:1147-1162. https://doi.org/10.1093/glycob/cws074
  32. Bode L, Kunz C, Muhly-Reinholz M, Mayer K, Seeger W, Rudloff S. Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb Haemost. 2004;92:1402-1410. https://doi.org/10.1160/TH04-01-0055
  33. Bode L, Rudloff S, Kunz C, Strobel S, Klein N. Human milk oligosaccharides reduce platelet neutrophil complex formation leading to a decrease in neutrophil 2 integrin expression. J Leukoc Biol. 2004;76:820-826. https://doi.org/10.1189/jlb.0304198
  34. Thompson AM, Bizzarro MJ. Necrotizing enterocolitis in newborns: pathogenesis, prevention and management. Drugs. 2008;68:1227-1238. https://doi.org/10.2165/00003495-200868090-00004
  35. Jantscher-Krenn E, Zherebtsov M, Nissan C, Goth K, Guner YS, Naidu N, et al. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut. 2012;61:1417-1425. https://doi.org/10.1136/gutjnl-2011-301404
  36. Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, Schaefer L. Biological interplay between proteoglycans and their innate immune receptors in inflammation. Fed Eur Biochem Soc J. 2013;280:2165-2179.
  37. Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Capretti R, et al. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res. 2006;59:377-382. https://doi.org/10.1203/01.pdr.0000200805.45593.17
  38. Bollyky PL, Wu RP, Falk BA, Lord JD, Long SA, Preisinger A, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci USA. 2011;108:7938-7943. https://doi.org/10.1073/pnas.1017360108
  39. Riehl TE, Foster L, Stenson, WF. Hyaluronic acid is radioprotective in the intestine through a TLR4 and COX-2-mediated mechanism. Am J Physiol Gastrointest Liver Physiol. 2012;302:G309-G316. https://doi.org/10.1152/ajpgi.00248.2011
  40. Russo E, Scicchitano F, Citraro R, Aiello R, Camastra C, Mainardi P, et al. Protective activity of ${\alpha}$-lactoalbumin (ALAC), a whey protein rich in tryptophan, in rodent models of epileptogenesis. Neuroscience. 2012;226:282-288. https://doi.org/10.1016/j.neuroscience.2012.09.021
  41. Citraro R, Scicchitano F, De Fazio S, Raggio R, Mainardi P, Perucca E, et al. Preclinical activity profile of ${\alpha}$-lactoalbumin, a whey protein rich in tryptophan, in rodent models of seizures and epilepsy. Epilepsy Res. 2011;95:60-69. https://doi.org/10.1016/j.eplepsyres.2011.02.013
  42. Hakansson A, Zhivotovsky B, Orrenius S, Sabharwal H, Svanborg C. Apoptosis induced by a human milk protein. Proc Natl Acad Sci USA. 1995;92:8064-8068. https://doi.org/10.1073/pnas.92.17.8064
  43. Duringer C, Hamiche A, Gustafsson L, Kimura H, Svanborg C. HAMLET interacts with histones and chromatin in tumor cell nuclei. J Biol Chem. 2003;278:42131-42135. https://doi.org/10.1074/jbc.M306462200
  44. Gustafsson L, Aits S, Onnerfjord P, Trulsson M, Storm P, Svanborg C. Changes in proteasome structure and function caused by HAMLET in tumor cells. PloS One. 2009;4:e5229. https://doi.org/10.1371/journal.pone.0005229
  45. Mossberg AK, Hun Mok K, Morozova-Roche LA, Svanborg C. Structure and function of human ${\alpha}$-lactalbumin made lethal to tumor cells (HAMLET)-type complexes. Fed Eur Biochem Soc J. 2010;277:4614-4625.
  46. Fischer W, Gustafsson L, Mossberg AK, Gronli J, Mork S, Bjerkvig R, et al. Human ${\alpha}$-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Res. 2004;64:2105-2112. https://doi.org/10.1158/0008-5472.CAN-03-2661
  47. Mossberg AK, Wullt B, Gustafsson L, Mansson W, Ljunggren E, Svanborg C. Bladder cancers respond to intravesical instillation of HAMLET (human ${\alpha}$-lactalbumin made lethal to tumor cells). Int J Cancer. 2007;121:1352-1359. https://doi.org/10.1002/ijc.22810
  48. Zhang Y, Luo J, Bi J, Wang J, Sun L, Liu Y, et al. Efficient separation of homologous ${\alpha}$-lactalbumin from transgenic bovine milk using optimized hydrophobic interaction chromatography. J Chromatogr A. 2010;1217:3668-3673. https://doi.org/10.1016/j.chroma.2010.03.060
  49. Guo Z, Vikbjerg AF, Xu X. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv. 2005;23:203-259. https://doi.org/10.1016/j.biotechadv.2005.02.001
  50. Castro-Gomez MP, Holgado F, Rodriguez-Alcala LM, Montero O, Fontecha J. Comprehensive study of the lipid classes of krill oil by fractionation and identification of triacylglycerols, diacylglycerols, and phospholipid molecular species by using UPLC/QToF-MS. Food Anal Methods. 2015;8:2568-2580. https://doi.org/10.1007/s12161-015-0150-6
  51. Li J, Ren S, Piao HL, Wang F, Yin P, Xu C, et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci Rep. 2016;6:20984. https://doi.org/10.1038/srep20984
  52. Rosqvist F, Smedman A, Lindmark-Mansson H, Paulsson M, Petrus P, Straniero S, et al. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am J Clin Nutr. 2015;102:20-30. https://doi.org/10.3945/ajcn.115.107045
  53. Patwardhan GA, Liu YY. Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res. 2011;50:104-114. https://doi.org/10.1016/j.plipres.2010.10.003
  54. Snow DR, Jimenez-Flores R, Ward RE, Cambell J, Young MJ, Nemere I, et al. Dietary milk fat globule membrane reduces the incidence of aberrant crypt foci in Fischer-344 rats. J Agric Food Chem. 2010;58:2157-2163. https://doi.org/10.1021/jf903617q
  55. Zanabria R, Tellez AM, Griffiths M, Corredig M. Milk fat globule membrane isolate induces apoptosis in HT-29 human colon cancer cells. Food Funct. 2013;4:222-230. https://doi.org/10.1039/C2FO30189J