References
- T. Bouwmans, "Recent Advanced Statistical Background Modeling for Foreground Detection: A Systematic Survey," Recent Patents on Computer Science, vol.4, No.3, 2011. DOI: 10.2174/2213275911104030147
- A. Sobral and A. Vacavan, "A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos," Computer Vision and Image Understanding, vol.122, pp.4-21, 2014. DOI: 10.1016/j.cviu.2013.12.005
- K Sehairi and F Chouireb, "Comparative study of motion detection methods for video surveillance systems," Journal of Electronic Imaging, vol.26, no.2, 2017. DOI: 10.1117/1.JEI.26.2.023025
- T. Bouwmans, "Traditional and recent approaches in background modeling for foreground detection: An overview," Computer Science Review, vo.11-12, pp.31-66, 2014. DOI: 10.1016/j.cosrev.2014.04.001
- Garcia-Garcia, Belmar, Thierry Bouwmans, and Alberto Jorge Rosales Silva. "Background Subtraction in Real Applications: Challenges, Current Models and Future Directions," Computer Science Review, vol35, 2020. DOI: 10.1016/j.cosrev.2019.100204
- Zoran Zivkovic and Ferdinand van der Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction," Pattern Recognition Letters, vol.27 no.7, pp.773-780, 2006. DOI: 10.1016/j.patrec.2005.11.005
- Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar, "CDnet 2014: An Expanded Change Detection Benchmark Dataset," IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.387-394, 2014. DOI: 10.1109/CVPRW.2014.126
- C. Stauffer, W. E. L. Grimson, "Adaptive background mixture models for real-time tracking," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, 1999. DOI: 10.1109/CVPR.1999.784637
- T. Bouwmans, F. El Baf and B. Vachon, "Background Modeling using Mixture of Gaussians for Foreground Detection-A Survey," Recent Patents on Computer Science, vol.1, no.3, pp.219-237, 2008. DOI: 10.2174/2213275910801030219
- S. Varadarajan, P. Miller and H. Zhou, "Spatial mixture of Gaussians for dynamic background modelling," Advanced Video and Signal Based Surveillance (AVSS), 2013 10th IEEE International Conference, pp.63-68, 2013. DOI: 10.1109/AVSS.2013.6636617
- S. Varadarajan, P. Miller and H. Zhou, "Regionbased Mixture of Gaussians modelling for foreground detectionin dynamic scenes," Pattern Recognition, vol.48, pp.2488-3503, 2015. DOI: 10.1016/j.patcog.2015.04.016
- I. Martins, P. Carvalho, L. Corte-Real, and J. Alba-Castro, "BMOG: Boosted Gaussian Mixture Model with Controlled Complexity," Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2017), pp.50-57, 2017. DOI: 10.1007/s10044-018-0699-y
- R. Wang, F. Bunyak, G. Seetharaman and K. Palaniappan "Static and Moving Object Detection Using Flux Tensor with Split Gaussian Models," IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014. DOI: 10.1109/CVPRW.2014.68
- I. Lissner, P. Urban, "Toward a unified color space for perception-based imageprocessing," IEEE Transactions on Image Processing, vol.21, no.3, pp.1153-1168, 2012. DOI: 10.1109/TIP.2011.2163522
- M. Balcilar, M. F. Amasyali, A. C. Sonmez, "Moving object detection usinglab2000hl color space with spatial and temporal smoothing," Applied Mathematics & Information Sciences, vol.8, no.4, pp.1755-1766, 2014. DOI: 10.12785/amis/080433
- R. Cucchiara, C. Grana, M. Piccardi and A. Prati, "Detecting Moving Objects, Ghosts, and Shadows in Video Streams," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, no.10, pp.1337-1342, 2003. https://doi.org/10.1109/TPAMI.2003.1233909
- S. Bianco, G. Ciocca and R. Schettini, "Combination of Video Change Detection Algorithms by Genetic Programming," in IEEE Transactions on Evolutionary Computation, vol.21, no.6, pp.914-928, 2017. DOI: 10.1109/TEVC.2017.2694160
- Jiang S, Lu X. "WeSamBE: A Weight-Sample-Based Method for Background Subtraction[J]," IEEE Transactions on Circuits and Systems for Video Technology, vol.28, no.9, pp.2105-2115, 2017. DOI: 10.1109/TCSVT.2017.2711659
- P.-L. St-Charles, G.-A. Bilodeau, R. Bergevin, "A Self-Adjusting Approach to Change Detection Based on Background Word Consensus," IEEE Winter Conference on Applications of Computer Vision (WACV), 2015. DOI: 10.1109/WACV.2015.137
- P.-L. St-Charles, G.-A. Bilodeau, R. Bergevin, "SuBSENSE: A Universal Change Detection Method with Local Adaptive Sensitivity," IEEE Transactions on Image Processing, 2014. DOI: 10.1109/WACV.2015.137