DOI QR코드

DOI QR Code

원형배열 안테나의 위상차 패턴을 이용한 방향탐지 기법

Direction Finding Method of the Uniform Circular Array Antenna Using the Pattern of Phase Differences

  • 임중수 (백석대학교 정보통신학부)
  • Lim, Joong-Soo (Division of Information Communication, Baekseok University)
  • 투고 : 2018.10.17
  • 심사 : 2018.01.20
  • 발행 : 2019.01.28

초록

본 논문에서는 원형배열 안테나의 위상차와 위상차 배열 패턴을 비교하여 전파 신호원의 방향을 찾는 방법을 연구하였다. 위상비교 방향탐지 방식에서는 안테나 기준선 길이가 입사신호의 0.5파장보다 길면 같은 위상차에서 두 개 이상의 방위가 계산되는 방위각 모호성이 발생한다. 본 논문에서는 0-360도 방위각에서 전파 신호가 입사될 때 5개 안테나에서 검출된 위상차 패턴을 융합하여 방위각 모호성을 제거한다. 개발된 모호성 제거 기법은 안테나가 5개인 균일원형배열 구조에서 안테나 기준선이 입사신호의 1.236파장 이하이면 방위각 모호성 없이 방향탐지를 정확하게 수행하였다. 본 알고리즘은 조난구조와 전자정보시스템의 방향탐지 장치 설계에 잘 활용할 수 있을 것으로 판단된다.

In this paper, we have studied a direction finding method of the radio signal by comparing the phase difference and its pattern from the uniform circular array antenna. In the phase comparison direction finding, if the length of the antenna baseline is longer than 0.5 wavelength of the incident signal, azimuth ambiguity occurs in which two or more azimuth angles are calculated in the same phase difference. The azimuthal ambiguity is removed by fusing the phase difference of the 5 antennas. The developed ambiguity elimination technology reduces the azimuth error where the antenna baseline is shorter than 1.236 wavelength in the uniform circular array with five antennas. This algorithm is very useful for the design of direction finder of an electronic information system.

키워드

OHHGBW_2019_v10n1_1_f0001.png 이미지

Fig. 1. Interferometer direction finding system with five antenna uniform circular array

OHHGBW_2019_v10n1_1_f0002.png 이미지

Fig. 2. Phase comparison direction finding device with two antenna channels

OHHGBW_2019_v10n1_1_f0003.png 이미지

Fig. 3. 5-antenna UCA and antenna baselines

OHHGBW_2019_v10n1_1_f0004.png 이미지

Fig. 4. 5-antenna UCA and phase differences ofantenna baselines

OHHGBW_2019_v10n1_1_f0005.png 이미지

Fig. 5. Phase difference pattern of 5 antenna baselines with L=0.5λ

OHHGBW_2019_v10n1_1_f0006.png 이미지

Fig. 6. Phase difference pattern of 5 antenna baselines with L=1.0λ

OHHGBW_2019_v10n1_1_f0007.png 이미지

Fig. 8. Phase difference pattern of 5 antenna baselines with L=1.3λ

OHHGBW_2019_v10n1_1_f0008.png 이미지

Fig. 7. Phase difference pattern of 5 antenna baselines with L=1.236λ

Table 1. Reference azimuth angles of antenna baselines in Fig. 3

OHHGBW_2019_v10n1_1_t0001.png 이미지

Table 2. Azimuth angle of each part in Fig. 5

OHHGBW_2019_v10n1_1_t0002.png 이미지

Table 3. Number of the baseline into each part of Fig. 5 w.r.t. phase difference

OHHGBW_2019_v10n1_1_t0003.png 이미지

Table 4. Number of the baseline into each part of Fig. 6 w.r.t. phase difference

OHHGBW_2019_v10n1_1_t0004.png 이미지

Table 5. Number of the baseline into each part of Fig. 7 w.r.t. phase difference

OHHGBW_2019_v10n1_1_t0005.png 이미지

Fig. 9. Azimuth calculation with phase differences and phase patterns of baselines

OHHGBW_2019_v10n1_1_t0006.png 이미지

참고문헌

  1. Andrea De Martino. (2012). Introduction to Modern EW Systems, Artech House, Boston, 221-244.
  2. Sathish Chandran Editor. (2005). Advanced in Direction-of-Arrival Estimation, Artech House, Boston, 241-258.
  3. J. S. Lim, (2017). Data Convergence of Circular Array Correlative Interferometer Direction finding with 7 Antennas. Journal of the Korea Convergence Society, 8(11), 1-6 https://doi.org/10.15207/JKCS.2017.8.11.001
  4. Filippo Neri, (2001). Introduction to electronic Defense Systems, 2nd ed., Artech House, Boston, 324-34430.
  5. G. D. Curtis Schleher. (1999). A Electronic Warfare in the Information Age, Artech House, Boston, 361-386.
  6. J. S. Lim, (2017). Design of Wideband RF Frequency Measurement System with EP2AGX FPGA. Journal of the Korea Convergence Society, 8(7), 1-6 https://doi.org/10.15207/JKCS.2017.8.7.001
  7. J. S. Lim & G. S. Chae. (2016). Analysis of Direction Finding Accuracy for Amplitude-Phase Comparison and Correlative Interferometer Method. Journal of the Society of Digital Policy & Management, 14(1), 195-201.
  8. J. H. Lee & J. M. Woo. (2014). The Direction Finding Ambiguity Analysis for 3 Element and 4 Element Phase Interferometer DF System. Journal of the Korea Institute of Military Science and Technology, 17(4), 544-550. https://doi.org/10.9766/KIMST.2014.17.4.544
  9. http://www.cobham.com/advanced-electronic-solutions/integrated-electronic-solutions/electronic-warfare-systems/electronic-surveillance-es-subsystems/
  10. Libero Dinoi, Antonio Di Vito & Graziano Lubello. (2008). Direction Finding of ground based emitters from airborne platforms. 2008 IEEE Radar Conference, 1-6.
  11. Xun Yang & Cui Zhan-zhong. (2009). Two- Dimensional Circular Array Real-Time Phase Interferometer Algorithm and its Correction. 2nd International Congress on Image and Signal Processing, 1-4.
  12. S. Y. Oh, K. C. Cho, J. H. Kim.. J. B. Yun & K. J. Han (2013). A Self-Organizing Angle-based Routing Protocol for Urban Environments. Journal of the Society of Digital Policy & Management, 11(10), 379-385.
  13. Y. H. Kim, J. S. Lim, G. S. Chae & K. C. Kim. (2015). An investigation of the Azimuth Error for Correlative Interferometer Direction Finding. Journal of the Korea Convergence Society, 6(5), 249-255. https://doi.org/10.15207/JKCS.2015.6.5.249
  14. J. S. Lim, Y. H. Kim & K. C. Kim. (2017). A Simulator for Analyzing of Correlative Interferometer Direction Finder. Journal of the SMB Convergence Society, 7(2), 53-58.
  15. J. S. Lim, G. S. Chae, Y. H. Kim & K. C. Kim. (2017). Azimuth Accuracy Test of Phase Comparison Direction Finding Method Using F-16 Fighter Scale-down Model. Journal of the SMB Convergence Society, 7(5), 83-88.