DOI QR코드

DOI QR Code

교육용 모바일 증강현실 게임을 위한 지능형 어휘 추천 에이전트

Intelligent Vocabulary Recommendation Agent for Educational Mobile Augmented Reality Games

  • 김진일 (한남대학교 탈메이지교양교육대학)
  • Kim, Jin-Il (Talmage Liberal Arts College, Hannam University)
  • 투고 : 2018.12.26
  • 심사 : 2019.02.20
  • 발행 : 2019.02.28

초록

본 논문에서는 모바일 교육 증강현실 게임 환경에서 게임 학습 참여자의 학습 필요와 요구에 부응하는 어휘를 자동으로 제공해주는 지능형 어휘 추천 에이전트를 제안한다. 제안된 에이전트는 모바일 기술의 특성과 증강 현실 기술의 특성을 최대한 반영하여 설계하도록 하고 상황 어휘 추론 모듈, 싱글 게임 어휘 추천 모듈, 배틀 게임 어휘 추천 모듈, 학습 어휘 목록 모듈, 유의어 모듈로 구성한다. 연구 결과, 게임 학습 참여자들은 대체적으로 만족함을 알 수 있다. 상황 어휘 추론과 유의어의 정확도는 각각 4.01점, 4.11점으로 게임 학습 참여자가 처한 상황과 관련이 깊은 어휘가 추출되는 것을 보여준다. 하지만 만족도의 경우에는 배틀 게임 어휘(3.86)는 개인별 학습자의 추천 어휘 중에서 공동으로 사용할 수 있는 어휘를 추천하기 때문에 싱글 게임 어휘(3.94)보다는 상대적으로 낮은 결과가 나타났다.

In this paper, we propose an intelligent vocabulary recommendation agent that automatically provides vocabulary corresponding to game-based learners' needs and requirements in the mobile education augmented reality game environment. The proposed agent reflects the characteristics of mobile technology and augmented reality technology as much as possible. In addition, this agent includes a vocabulary reasoning module, a single game vocabulary recommendation module, a battle game vocabulary recommendation module, a learning vocabulary list Module, and a thesaurus module. As a result, game-based learners' are generally satisfied. The precision of context vocabulary reasoning and thesaurus is 4.01 and 4.11, respectively, which shows that vocabulary related to situation of game-based learner is extracted. However, In the case of satisfaction, battle game vocabulary(3.86) is relatively low compared to single game vocabulary(3.94) because it recommends vocabulary that can be used jointly among recommendation vocabulary of individual learners.

키워드

JKOHBZ_2019_v9n2_108_f0001.png 이미지

Fig 1. Structure of Agent

Table 1. Vocabulary sets(one part)

JKOHBZ_2019_v9n2_108_t0001.png 이미지

Table 2. Precision and Satisfaction of recommended vocabulary for each module

JKOHBZ_2019_v9n2_108_t0002.png 이미지

참고문헌

  1. J. I. Kim. (2018.11.30.). 2018 ELEARNING HYPE CURVE PERDICTIONS, WEB COURSEWORKS, https://webcourseworks.com/ elearning-predictions-hype-curve
  2. J. I. Yi & J. S. Han. (2017). A study on developing a Learning material Screening system for improving foreign language learning efficiency. Journal of Convergence for Information Technology, 7(1), 87-92. https://doi.org/10.22156/CS4SMB.2017.7.1.087
  3. J. W. Kim, S. J. Park, G. Y. Min & K. M. Lee. (2017). Virtual Reality based Situation Immersive English Dialogue Learning System. Journal of Convergence for Information Technology, 7(6), 245-251. https://doi.org/10.22156/CS4SMB.2017.7.6.245
  4. M. Dunleavy, C. Dede & R. Mitchell. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7-22. https://doi.org/10.1007/s10956-008-9119-1
  5. T. Y. Liu & Y. L. Chu. (2010). Using ubiquitous games in an English listening and speaking course: Impact on learning outcomes and motivation. Computers & Education, 55(2), 630-643. https://doi.org/10.1016/j.compedu.2010.02.023
  6. T. Winkler, M. Ide-Schoening & M. Herczeg. (2008b). Mobile Co-operative Game-based Learning with Moles: Time Travelers in Medieval Ages. In K. Mc Ferrin, R. Weber, R. Carlsen, & D. A. Willis (Eds.). Proceedings of SITE, 3441-3449. Chesapeak, VA: AACE.
  7. P. H. E. Liu & M. K. Tsai. (2013). Using augmented-reality-based mobile learning material in EFL English composition: An exploratory case study. British Journal of Educational Technology, 44(1), E1-E4. https://doi.org/10.1111/j.1467-8535.2012.01302.x
  8. M. Luca, C. Koula, A. Sylvester, C. Tiziana, B. Billy, B. Tyrone & V. Gaetan. (2016). ImparApp: designing and piloting a game-based approach for language learning. Proceedings of the European Conference on Games-based Learning, 1005-1009.
  9. C. L. Holden & J. M. Sykes. (2011). Leveraging Mobile Games for Place-Based Language Learning. International Journal of Game-Based Learning, 1(2), 118.
  10. B. Schmitz, R. Klemke & M. Specht. (2012). An Analysis of the Educational Potential of Augmented Reality Games for Learning. Proceedings of the 11th World Conference on Mobile and Contextual Learning, Helsinki, Finland, 140-147.
  11. G. Koutromanos, A. Sofos & L. Avraamidou. (2015). The use of augmented reality games in education: A review of the literature. Educational Media International, 52(4),253-271. https://doi.org/10.1080/09523987.2015.1125988
  12. R. Godwin-jones. (2016). Augmented Reality and Language Learning: From Annotated Vocabulary to Place-Based Mobile Games. Language Learning & Technology, 20(3), 9-19.
  13. H. F. Tobar-Munoz. (2017). Supporting Technology for Augmented Reality Game-Based Learning. Doctoral Dissertation, University of Girona, Girona, Spain.
  14. E. Horvitz. et al. (1998). The Lumiere project : Bayesian user modeling for inferring the goals and needs of software users. Proc. 14th Conf. on Uncertainty in Artificial Intelligence.
  15. J. I. Kim. (2016). Development of a English vocabulary context-learning agent based on smartphone. Journal of Korea Multimedia Society, 19(2), 344-351. https://doi.org/10.9717/kmms.2016.19.2.344
  16. J. I. Kim. (2014). An Intelligent Learning Agent using User Information and Learner's environment in Mobile Environment, International Journal of Multimedia and Ubiquitous Engineering, 9(11), 143-152. https://doi.org/10.14257/ijmue.2014.9.11.14
  17. E. C. Kim, S. H. Kim, H. J. Yang & S. W. Oh. (2008). Character segmentation of signboard images using connected component analysis, Proceedings of the Korea Multimedia Society Conference, 252-255.
  18. E. Rublee, V. Rabaud, K. Konolige, & G. Bradski. (2011). ORB: An efficient alternative to SIFT or SURF, 2011 International Conference on Computer Vision, 2564-2571.
  19. H. Jeong & K. S. Kim. (1992). A Korean Phoneme Recognition system using Neural Networks, HICEC:Harbin International Conference on Electronics and Computers, 146-149.
  20. J. I. Kim. (2018.12.01.). mixare-Open Source Augmented Reality Engine, Mixare. http://mixare.org
  21. K. Y. Chung. (2008). Recommendation using Context Awareness based Information Filtering in Smart Home. Journal of The Korea Contents Association, 8(7), 17-25. https://doi.org/10.5392/JKCA.2008.8.7.017