DOI QR코드

DOI QR Code

Reliability of Combustion Properties of MSDS(Material Safety Data Sheet) of tert-Amylalcohol(TAA)

tert-Amylalcohol(TAA)의 물질안전보건자료(MSDS) 연소특성치의 신뢰도

  • Ha, Dong-Myeong (Dept. of Occupational Health and Safety Engineering, Semyung University)
  • 하동명 (세명대학교 보건안전공학과)
  • Received : 2019.09.25
  • Accepted : 2019.11.12
  • Published : 2019.12.31

Abstract

The combustion properties of the flammable substance used in industrial fields include lower/upper flash point, lower/upper explosion limit, autoignition temperature(AIT), fire point, and minimum oxygen concentration(MOC) etc.. The accurate assessment of these characteristics should be made for process and worker safety. In this study, tert-amylalcohol(TAA), which is widely used as a solvent for epoxy resins, oxidizers of olefins, fuel oils and biomass, was selected. The reason is that there are few researches on the reliability of combustion characteristics compared to other flammable materials. The flash point of the TAA was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the TAA was measured by ASTM 659E. The lower/upper explosion limits of the TAA was estimated using the measured lower/upper flash points by Setaflash tester. The flash point of the TAA by using Setaflash and Pensky-Martens closed-cup testers were experimented at 19 ℃ and 21 ℃, respectively. The flash points of the TAA by Tag and Cleveland open cup testers were experimented at 28 ℃ and 34 ℃, respectively. The AIT of the TAA was experimented at 437 ℃. The LEL and UEL calculated by using lower and upper flash point of Setaflash were calculated at 1.10 vol% and 11.95 vol%, respectively.

산업현장에서 사용되고 있는 인화성물질의 연소특성치로는 하부/상부인화점. 폭발하한계/상한계, 최소자연발화온도(AIT), 연소점, 최소산소농도(MOC) 등이 있다. 공정 및 근로자 안전을 위해서는 이들 특성치의 정확한 평가가 이루어져야 한다. 본 연구에서는 에폭시수지와 폴리우레탄의 용매, 올레핀의 산화제, 연료용 기름과 바이오물질의 주원료 등으로 다양하게 사용되고 있는 tert-Amylalcohol(TAA)를 선정하였다. 그 이유는 다른 가연성물질에 비해 연소특성치의 신뢰성에 비교 고찰하였다. TAA의 인화점은 밀폐식 Setaflash, Pensky-Martens와 개방식 Tag, Cleveland 장치로 측정하였고, AIT는 ASTM 659E를 사용하였다. 그리고 TAA의 폭발하한계/상한계는 측정된 하부/상부인화점을 이용하여 예측하였다. Setaflash, Pensky-Martens에 의한 인화점은 19 ℃와 21 ℃, Tag와 Cleveland는 각각 28 ℃와 34 ℃, AIT는 437 ℃로 측정되었다. Setaflash에서 측정된 인화점에 의한 폭발하한계/상한계는 1.1 vol%와 11.95 vol%로 계산되었다.

Keywords

References

  1. Lees, F. P., Loss Prevention in the Process Industries, Vol. 2, 2nd ed., Butterworth-Heinemann, (1996)
  2. Kang, G. H. and Ha, D. M., "The Measurement of Combustible Properties of MSDS of Isobutylbenzene(IBB)", Korean J. of Hazardous Materials, 5(1), pp. 35-41, (2017)
  3. Das, B., Kumar, S. and Mondal, P., "Experimental Measurement and Correlation of Flash Point of Alterate PUREX/UREX Solvent(36% TiPA) in C8-C16 Diluents", J. Radiational Nucl Chem, 289, pp. 503-505, (2011) https://doi.org/10.1007/s10967-011-1093-z
  4. Mitchell, J.W. et al., "Experimental Flash Points of Industrial Amines", J. of Chem. Eng. Data, 44, pp. 209-211, (1999) https://doi.org/10.1021/je980144h
  5. Radnoff, D., " Accuracy of Reported Flash Point Values on Material Safety Data Sheets and the Impact on Product Classification", J. of Occupational and Environmental Hygiene, 10, 540-546, (2013) https://doi.org/10.1080/15459624.2013.818233
  6. Ha, D. M., " The Measurement and Prediction of Combustible Properties of Phenol", Korean J. of Hazardous Materials, 6(2), 24-30, (2018)
  7. Swarts, D. E. and Orchin, M., "Spontaneous Ignition Temperature of Hydrocarbons", Industrial and Engineering Chemistry, 49(3), 432-436, (1957) https://doi.org/10.1021/ie51392a042
  8. Chen, C. C. and Hsieh, Y. C., "Effect Of Experimental Conditions on Measuring Auto-ignition Temperature of Liquid Chemicals", Ind. Eng. Chem. Res., 49(12), 5925-5932, (2010) https://doi.org/10.1021/ie9020649
  9. Ha, D. M. ," The Prediction and Measurement of Combustion Properties of Bromobenzene", Fire Sci. Eng., 29(4), 21-25, (2015) https://doi.org/10.7731/KIFSE.2015.29.4.021
  10. Lide, D. R., Handbook Chemistry and Physics, 76th ed., CRC Press, 1996
  11. Perry, R. H. and Green, D. W., Perry's Chemical Engineer's Handbook, 7th ed., McGraw-Hill, (1997)
  12. Lewis, R. J., SAX's Dangerous Properties of Industrial Materials, 11th ed., John Wiley & Son, Inc., New Jersey, (2004)
  13. KOSHA, http://msds.kosha.or.kr/kcic/msdsdetail.do
  14. NFPA, Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids, NFPA 325M, National Fire Protection Association, (1991)
  15. Babrauskas, V., Ignition Handbook, Fire Science Publishers, Society of Fire Protection Engineers, (2003)
  16. Lenga. R. E. and Votoupal, K. L., The Sigma Aldrich Library of Regulatory and Safety Data, Volume I-III, Sigma Chemical Company and Aldrich Chemical Company Inc., 1993.
  17. Dean, J. A., Lange's Handbook of Chemistry, 14th ed. McGraw-Hill, (1992)
  18. Soheil, B. S., Morteza, S. S. and Fathollah, O., " Effective Oxygenates Blending with Gasoline to Improve Fuel Properties", Chinese J. of Mechanical Enineering, 25(4), 792-796, (2012) https://doi.org/10.3901/CJME.2012.04.792
  19. Stephenson, S. M., Flash Points of Organic and Organometallic Compounds, Elsevier, (1987)
  20. Catoire, L., Paulmier, S., and Naudet, V., "Experimental Determination and Estimation of Closed Cup Flash Points of Mixtures of Flammable Solvents", Process Saf. Prog., 25(1), 33-39, (2006) https://doi.org/10.1002/prs.10112
  21. Katritzky, A. R. Petrukhin, R., Jain, R. and Karelson, M., "QSPR Analysis of Flash Point", J. Chem. Inf. Comput. Sci., 41, 1521-1530, (2001) https://doi.org/10.1021/ci010043e
  22. Zabetakis, G.M., Furno, A. L. and Jones, G. W., "Minimum Spontaneous Ignition Temperature of Combustibles in Air", Industrial and Engineering Chemistry, 46(2), 2173-2178, (1954) https://doi.org/10.1021/ie50538a047
  23. Semenov, N. N., Some Problems in Chemical Kinetics and Reactivity, Vol. 2, Princeton University Press, Princeton, N.J., (1959)
  24. Lewis, B. and von Elbe, G., Combustion Flame and Explosions of Gases, Academic Press, 1961.
  25. Ha, D. M., "A Study on Explosive Limits of Flammable Materials - Prediction of Explosive Properties and Temperature Dependence of Explosive Limits for n-Alcohols-", J. of the Korean Society of Safety, 14(1), 93-100, (1999)
  26. Osterberg, P. M. et al., " Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperature and Pressure Relevant to Aerobic Oxidations in Pharmaceutical Industry", Organic Process Research Development, 19, 1537-1543, (2015) https://doi.org/10.1021/op500328f