DOI QR코드

DOI QR Code

A Comparison of Single and Multi-matrix Models for Bird Strike Risk Assessment

단일 및 다중 매트릭스 모델의 비교를 통한 항공기-조류 충돌 위험성 평가 모델 분석

  • Hong, Mi-Jin (Department of Biology and Korea Institute of Ornithology, Kyung Hee University) ;
  • Kim, Myun-Sik (Department of Biology and Korea Institute of Ornithology, Kyung Hee University) ;
  • Moon, Young-Min (Department of Biology and Korea Institute of Ornithology, Kyung Hee University) ;
  • Choi, Jin-Hwan (Department of Biology and Korea Institute of Ornithology, Kyung Hee University) ;
  • Lee, Who-Seung (Korea Environment Institute) ;
  • Yoo, Jeong-Chil (Department of Biology and Korea Institute of Ornithology, Kyung Hee University)
  • 홍미진 (경희대학교 생물학과 및 한국조류연구소) ;
  • 김면식 (경희대학교 생물학과 및 한국조류연구소) ;
  • 문영민 (경희대학교 생물학과 및 한국조류연구소) ;
  • 최진환 (경희대학교 생물학과 및 한국조류연구소) ;
  • 이후승 (한국환경정책.평가연구원) ;
  • 유정칠 (경희대학교 생물학과 및 한국조류연구소)
  • Received : 2019.08.27
  • Accepted : 2019.11.28
  • Published : 2019.12.31

Abstract

Bird strike accidents, a collision between aircraft and birds, have been increasing annually due to an increasing number of aircraft operating each year to meet heavier demand for air traffic. As such, many airports have conducted studies to assess and manage bird strike risks effectively by identifying and ranking bird species that can damage aircraft based on the bird strike records. This study was intended to investigate the bird species that were likely to threaten aircraft and compare and discuss the risk of each species estimated by the single-matrix and multi-matrix risk assessment models based on the Integrated Flight Information Service (IFIS) data collected in Gimpo, Gimhae and Jeju Airports in South Korea from 2005 to 2013. We found that there was a difference in the assessment results between the two models. The single-matrix model estimated 2 species and 6 taxa in Gimpo and Gimhae Airports and 2 species and 5 taxa in Jeju Airport to have the risk score above "high," whereas the multi-matrix model estimated 3 species and 5 taxa in Gimpo Airport, 4 species and 5 taxa in Gimhae Airport, and 2 species and 3 taxa in Jeju Airport to have the risk score above "very high." Although both models estimated the similar high-risk species in Gimpo and Gimhae Airports, there was a significant difference in Jeju Airport. Gimpo and Gimhae Airports are near the estuary of a river, which is an excellent habitat for large and heavy waterbirds. On the other hand, Jeju Airport is near the coast and the city center, and small and light bird species are mostly observed. Since collisions with such species have little effect on aircraft fuselage, the impact of common variables between the two models was small, and the additional variables caused a significant difference between the estimation by the two models.

항공교통 수요 증가로 항공기의 운항이 증가하면서 항공기 동체와 조류가 충돌하는 조류 충돌 사고가 매년 증가하고 있다. 이에 각 공항에서는 조류 충돌 사고기록을 바탕으로 항공기에 피해를 줄 것으로 예상되는 조류 종을 파악하고 순위를 매겨 충돌 위험을 효과적으로 평가 및 관리할 수 있는 연구를 수행하고 있다. 본 연구는 김포, 김해 및 제주국제공항에서 2005년부터 2013년까지 수집된 통합운항정보시스템 (Integrated Flight Information Service, IFIS) 자료를 바탕으로 항공기에 피해를 줄 것으로 예측되는 조류 종을 파악하고, 단일 및 다중 매트릭스 모델 간 위험성 평가 결과를 비교 분석 및 고찰하기 위해 수행되었다. 단일 매트릭스 모델을 통한 평가 결과 김포국제공항 및 김해국제공항에서는 왜가리, 독수리 2종과 백로류, 기러기류, 오리류, 갈매기류, 비둘기류 및 까마귀류가, 제주국제공항에서는 독수리, 까치 2종과 기러기류, 오리류, 갈매기류, 비둘기류 및 까마귀류가 '매우 높음' 또는 '높음'으로 평가되었다. 다중 매트릭스 모델을 통한 평가 결과 김포국제공항에서는 왜가리, 독수리, 까치 3종과 백로류, 기러기류, 오리류, 도요류 및 비둘기류가, 김해국제공항에서는 왜가리, 독수리, 찌르레기, 까치 4종과 백로류, 기러기류, 오리류, 도요류 및 비둘기류가, 제주국제공항에서는 왜가리, 까치 2종과 오리류, 도요류, 비둘기류가 '매우 심각' 또는 '매우 높음'으로 평가되었다. 모델 간 예측 결과에 있어 김포국제공항과 김해국제공항은 차이가 없었으나, 제주국제공항은 유의한 차이가 있었다. 이는 김포와 김해국제공항은 모두 하천의 하류에 위치하고 있어 대형 수조류들이 주로 관찰된 것에 반해 제주국제공항은 바다와 도심에 가까이 위치하고 있어 몸무게가 작은 소형 조류들이 많이 관찰되었기 때문이다. 이러한 종들과의 충돌이 항공기 동체에 미치는 영향이 적어 모델 간의 공통된 변수의 영향은 적었고, 추가적인 변수에 의해 두 모델의 평가 결과 간 큰 차이가 발생한 것으로 판단된다.

Keywords

References

  1. Allan, J.R.(2000a) A protocol for bird strike risk assessment at airports. Proceedings of the 25th International Birdstrike Committee, Amsterdam, Netherland.
  2. Allan, J.R.(2000b) The costs of bird strikes and bird strike prevention. Proceedings of the 3rd National Wildlife, Special Symposium (ed. L. Clark), pp. 147-153. Research Center, Fort Collins, Colorado, USA.
  3. Allan, J.R.(2006) A heuristic risk assessment technique for birdstrike management at airports. Risk Analysis 26(3): 723-729. https://doi.org/10.1111/j.1539-6924.2006.00776.x
  4. Allan, J.R., A. Orosz, A. Badham and J. Bell(2003) The development of birdstrike risk assessment procedures, their use on airports, and the potential benefits to the aviation industry. Proceedings of the 26th International Birdstrike Committee, Warsaw, Poland.
  5. Baker, D. and K. Dungey(2007) The integration of risk management into the design of the airport metropolis. Inhabiting Risk IDEA Conference 2007 (eds C. McCarthy & G. Mattewson), Wellington, New Zealand.
  6. Barras, S.C., M.S. Carrara, R.A. Dolbeer, R.B. Chipman and G.E. Bernhardt(2000) Bird and small mammal use of mowed and unmoved vegetation at John F. Kennedy International Airport, 1998 to 1999. Proceedings of the 19th Vertebrate Pest Conference, University of California, Davis.
  7. Chen, W., H. Ning and J. Li(2012) Flying bird detection and hazard assessment for avian radar system. Journal of Aerospace Engineering 25(2): 246-255. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000131
  8. DeVault, T.L., J.L. Belant, B.F. Blackwell and T.W. Seamans (2011) Interspecific variation in wildlife hazards to aircraft: Implications for airport wildlife management. Wildlife Society Bulletin 35(4): 394-402. https://doi.org/10.1002/wsb.75
  9. Dolbeer, R.A., S.E. Wright, J.R. Weller and M.J. Begier(2014) Wildlife strikes to civil aircraft in the United States 1990-2013. Federal Aviation Administration, Washington, DC.
  10. Dunning Jr, J.B.(2007) CRC handbook of avian body masses(2nd edn.). Taylor & Francis, Boca Raton.
  11. Federal Aviation Administration(2019) Wildlife strikes to civil aircraft in the United States 1990-2018. FAA National Wildlife Strike Database Serial Report 25, Washington DC.
  12. Grafen, A.(1991) Modelling in behavioural ecology. J.R. Krebs, N.B. Davies (Eds.), Behavioural ecology, an evolutionary approach, Blackwell, Oxford, pp. 5-31.
  13. Group, C.S.R.(2008) CAP 772 Bird strike risk management for aerodromes. CAA Safety Regulation Group.
  14. Hart, J.D., A. Colyer and J.R. Allan(2009) Developing bird-strike risk assessment models for open-water restorations. Human-Wildlife Conflicts 3(2): 186-198.
  15. Hennings, L.A. and W.D. Edge(2003) Riparian bird community structure in Portland, Oregon: habitat, urbanization, and spatial scale patterns. The Condor 105(2): 288-302. https://doi.org/10.1093/condor/105.2.288
  16. Hively, D.(2011) Biological modeling in data poor scenarios. M.Sc., University of California.
  17. ICAO(2012) Part 3 Wildlife control and reduction. Airport Services Manual. International Civil Aviation Organization, Montreal, Quebec.
  18. MacKinnon, B.(2002) Wildlife control procedures manual. Transport Canada, Ottawa, Canada.
  19. Maragakis, I.(2009) Bird population trends and their impact on aviation safety 1999-2008. European Aviation Safety Agency, Cologne, Germany.
  20. May, R.M.(1976) Simple mathematical models with very complicated dynamics. Nature 261: 459-467. https://doi.org/10.1038/261459a0
  21. Mitchell, M.S., S.H. Rutzmoser, T.B. Wigley, C. Loehle, J.A. Gerwin, P.D. Keyser, R.A. Lancia, R.W. Perry, C.J. Reynolds, R.E. Thill, R. Weih, D. White and P.B. Wood(2006) Relationships between avian richness and landscape structure at multiple scales using multiple landscapes. Forest Ecology and Management 221: 155-169. https://doi.org/10.1016/j.foreco.2005.09.023
  22. Munson, M.A., R. Caruana, D. Fink, W.M. Hochachka, M. Iliff, K.V. Rosenberg, D. Sheldon, B.L. Sullivan, C. Wood and S. Kelling(2010) A method for measuring the relative information content of data from different monitoring protocols. Methods in Ecology and Evolution 1(3): 263-273. https://doi.org/10.1111/j.2041-210X.2010.00035.x
  23. Park, S.H.(2012) Birdstrike risk assessment model for Jeju airport. Korea Civil Aviation Development Association 2: 121-135. (in Korean with English abstract)
  24. Pascual, M.(2005) Computational ecology: From the complex to the simple and back. PLoS Computational Biology 1: e18. https://doi.org/10.1371/journal.pcbi.0010018
  25. Paton, D.C.(2010) Bird risk assessment model for airports and aerodromes. Australian Aviation Wildlife Hazard Group.
  26. R Development Core Team(2016) R: a language and environment for statistical computing. [3.3.1] - Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/
  27. Ruhe, W.(2005) Bird avoidance models versus realtime birdstrike warning systems: a comparison. Proceedings of the 27th International Bird Strik Committee, Athens Greece.
  28. Santin-Janin, H., B. Hugueny, P. Aubry, D. Fouchet, O. Gimenez and D. Pontier(2014) Accounting for sampling error when inferring population synchrony from time-series data: A bayesian state-space modelling approach with applications. PLoS One 9: e87084. https://doi.org/10.1371/journal.pone.0087084
  29. Searing, G.F.(2005) Wildlife risk management at Vancouver International Airport. Bird Strike Committee-USA/Canada 7th Annual Meeting, Vancouver, BC.
  30. Seoane, J., L.M. Carrascal, C.L. Alonso and D. Palomino(2005) Species-specific traits associated to prediction errors in bird habitat suitability modelling. Ecological Modelling 185: 299-308. https://doi.org/10.1016/j.ecolmodel.2004.12.012
  31. Sterne, J.A.C., I.R. White, J.B. Carlin, M. Spratt, P. Royston, M.G. Kenward, A.M. Wood and J.R. Carpenter(2009) Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 338: b2393. https://doi.org/10.1136/bmj.b2393
  32. Tan, A., G. Searing and W.L. Keng(2010) A risk-based approach towards setting wildlife strike alert levels. Proceedings of the 29th International bird strike committee, Cairns, Australia.
  33. USDT(2012) Current hazard assessment systems. U.S. Department of Transportation.
  34. Wang, J. and E.E. Herricks(2012) Risk assessment of bird-aircraft strikes at commercial airports. Transportation Research Record: Journal of the Transportation Research Board 2266: 78-84. https://doi.org/10.3141/2266-09