DOI QR코드

DOI QR Code

Magnetic Properties of Micron Sized Fe3O4 Crystals Synthesized by Hydrothermal Methods

수열합성을 이용하여 제작한 Fe3O4 결정입자의 자기적 특성

  • Lee, Ki-Bum (Department of Applied Physics, Hannam University) ;
  • Nam, Chunghee (Department of Applied Physics, Hannam University)
  • 이기범 (한남대학교 광전자물리학과) ;
  • 남충희 (한남대학교 광전자물리학과)
  • Received : 2019.11.16
  • Accepted : 2019.12.03
  • Published : 2019.12.28

Abstract

Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 ㎛) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°-80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.

Keywords

References

  1. Y. M. Wang, X. Cao, G. H. Liu, R. Y. Hong, Y. M. Chen, X. F. Chen, H. Z. Li, B. Xu and D. G. Wei: J. Magn. Magn. Mater., 323 (2011) 2953. https://doi.org/10.1016/j.jmmm.2011.05.060
  2. C. Y. Haw, F. Mohamed, C. H. Chia, S. Radiman, S. Zakaria, N. M. Huang and H. N. Lim: Ceram. Int., 36 (2010) 1417. https://doi.org/10.1016/j.ceramint.2010.02.005
  3. D. Kwon, J. Joo, J. Lee, K.-H. Park and S. Jeon: Anal. Chem., 85 (2013) 7594. https://doi.org/10.1021/ac401717f
  4. B.-Y. Jung, H.-S. Lim, Y.-K. Sun and K.-D. Suh: J. Power Sources, 244 (2013) 177. https://doi.org/10.1016/j.jpowsour.2013.02.035
  5. W. Lei, Y. Liu, X. Si, J. Xu, W. Du, J. Yang, T. Zhou and J. Lin: Phys. Lett. A, 381 (2017) 314. https://doi.org/10.1016/j.physleta.2016.09.018
  6. C.-C. Lin and J.-M. Ho: Ceram. Int., 40 (2014) 10275. https://doi.org/10.1016/j.ceramint.2014.02.119
  7. C. Li, Y. Wei, A. Liivat, Y. Zhu and J. Zhu: Mater. Lett., 107 (2013) 23. https://doi.org/10.1016/j.matlet.2013.05.117
  8. T. J. Daou, G. Pourroy, S. Begin-Colin, J. M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey and G. Rogez: Chem. Mater., 18 (2006) 4399. https://doi.org/10.1021/cm060805r
  9. D. Peng, S. Beysen, Q. Li, J. Jian, Y. Sun and J. Jiwuer: Particuology, 7 (2009) 35. https://doi.org/10.1016/j.partic.2008.11.010
  10. H. Zhu, D. Yang and L. Zhu: Surf. Coat. Technol., 201 (2007) 5870. https://doi.org/10.1016/j.surfcoat.2006.10.037
  11. P. Hu, L. Kang, T. Chang, F. Yang, H. Wang, Y. Zhang, J. Yang, K.-S. Wang, J. Du and Z. Yang: J. Alloys Compd., 728 (2017) 88. https://doi.org/10.1016/j.jallcom.2017.08.290
  12. D.-L. Zhao, X.-W. Zeng, Q.-S. Xia and J.-T. Tang: J. Alloys Compd., 469 (2009) 215. https://doi.org/10.1016/j.jallcom.2008.01.083
  13. H. Yuan, Y. Wang, S.-M. Zhou and S. Lou: Chem. Eng. J., 175 (2011) 555. https://doi.org/10.1016/j.cej.2011.08.039
  14. S. Shi, C. Xu, X. Wang, Y. Xie, Y. Wang, Q. Dong, L. Zhu, G. Zhang and D. Xu: Mater. Des., 186 (2020) 108298. https://doi.org/10.1016/j.matdes.2019.108298
  15. Y. Zong, H. Xin, J. Zhang, X. Li, J. Feng, X. Deng, Y. Sun and X. Zheng: J. Magn. Magn. Mater., 423 (2017) 321. https://doi.org/10.1016/j.jmmm.2016.09.132