DOI QR코드

DOI QR Code

Quantitative Determination of Cristobalite Content in Diatomite and Filtered Food

규조토와 여과식품 중 크리스토발라이트의 정량분석

  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University)
  • 정기영 (안동대학교 지구환경과학과)
  • Received : 2019.12.09
  • Accepted : 2019.12.20
  • Published : 2019.12.30

Abstract

Diatomite is a silicic porous sedimentary rock composed of diatom frustules, used for filtration aid, filler, absorbent, abrasive, carrier, insulator, and fertilizer. During the calcination of diatomite to improve physical properties for filtration-aid application, amorphous silica is transformed to cristobalite. X-ray diffraction and scanning electron microscopy studies were carried out for 17 diatomite samples, showing that 16 diatomite samples contain cristobalite in the range of 6~100 %. Concentration of respirable cristobalite in air is regulated as harmful substances, but the residual cristobalite in food is treated as generally safe substance. The determination procedure of cristobalite content in food was established for managing food safety. Calibration curve of cristobalite filtered on silver membrane were obtained by X-ray diffraction. The lower limit of quantification was evaluated as 2.7 mg. The cristobalite was not detected in the analyses of selected food samples using the established procedure.

규조토는 규조 껍질로 구성된 규질 다공성 퇴적암으로서 여과보조재, 충전재, 흡착재, 연마재 등의 다양한 용도로 사용된다. 규조토의 특성 개선을 위해 열처리하게 되면, 비정질 실리카인 단백석이 크리스토발라이트로 상전이하여 규조토에 함유된다. 해외 규조토 17개 시료에 대하여 X-선회절분석과 주사전자현미경 분석을 실시한 결과, 1개 시료에는 크리스토발라이트가 함유되어 있지 않으나, 나머지 16개 시료에는 크리스토발라이트가 다양한 정도(6~100 %)로 함유되어 있었다. 공기 중 일정 농도 이상의 크리스토발라이트는 인체유해물질로 관리되나, 식품 중 크리스토발라이트의 유해성은 낮은 것으로 알려져 있다. 그러나 식품 품질 관리를 위해서 액상 여과식품 내 크리스토발라이트 함량 측정 필요성이 제기되어, 분석법을 수립하고 몇몇 식품을 대상으로 분석을 실시하였다. 은여과지로 여과한 크리스토발라이트에 X-선회절분석을 실시하고, 강도를 보정하여 검량선을 작성한 결과, 2.7 mg까지 미량 정량이 가능한 것으로 평가되었다. 이 방법으로 몇몇 유통 액상여과식품의 잔류 크리스토발라이트 함량을 측정하였으나 검출되지 않았다.

Keywords

References

  1. American Filtration & Separations Society (2019) What are filter aids? https://www.afssociety.org/what-arefilter-aids/.
  2. Breese, R.O.Y. and Bodycomb, F.M. (2006) Diatomite. In: Kogel, J.E., Trivedi, N.C., Barker, J.M., and Krukowski, S.T. (eds.), Industrial Minerals and Rocks, Commodities, Markets, and Uses. Society for Mining, Metallurgy, and Explorations, Inc., Littleton, Colorado, 433-450.
  3. CODEX (2004) Joint FAO/WHO food standards programme CODEX alimentarius commission, twenty-seventh session Geneva, Switzerland, 28 June-3 July 2004, Report of the 36th session of the CODEX committee on food additives and contaminants, Rotterdam, The Netherlands 22-26 March 2004.
  4. Deer, W.A., Howie, R.A., and Zussman, J. (2013) An Introduction to the Rock-Forming Minerals, 3rd ed. Mineralogical Society of Great Btitain and Ireland, Middlesex, United Kingdom, 498p.
  5. Dolley, T.P. (2000) Diatomite. USGS Minerals Yearbook 2000, 25.1-25.4.
  6. Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana's New Mineralogy. John Wiley & Sons, New York, 1819p.
  7. Goldsmith, D.F. (1994) Health effects of silica dust exposure. Rev. Mineral., 29, 545-606.
  8. Harben, P.W. (1995) The Industrial Minerals HandyBook. Metal Bulletin PLC, London, United Kingdom, 254p.
  9. Hughes, J.M., Weill, H., Checkoway, H., Jones, R.N., Henry, M.M., Heyer, N.J., Seixas, N.S., and Demers, P.A., (1998) Radiogenic evidence of silicosis risk in the diatomaceous earth industry. Am. J. Respir. Crit. Care Med., 158, 807-814. https://doi.org/10.1164/ajrccm.158.3.9709103
  10. Ijima, A. and Tada, R. (1981) Silica diagenesis of neogene diatomaceous and volcaniclastic sediments in northern Japan. Sedimentology, 28, 185-200. https://doi.org/10.1111/j.1365-3091.1981.tb01676.x
  11. KIGAM (2019) Mineral Commodity Information. https://mici.kigam.re.kr/Portal_335/main.html. Korea Institute of Geoscience and Mineral Resources.
  12. KOMIS (2014) Information on mineral resources. https://www.kores.net/common/pdfPreview.do?fid=mineralPdf-&mc_info_seq=5310. Korea Resources Corporation.
  13. Lange, B.A. and Haarz, J.C. (1979) Determination of microgram quantities of asbestos by X-ray diffraction: Chrysotile in thin dust layers of matrix material. Anal. Chem., 51, 520-525. https://doi.org/10.1021/ac50040a016
  14. Merget, R., Bauer, T., Kupper, H.U., Phillippou, S., Bauer, H.D., Breitstadt, R., and Bruening, T. (2002) Health hazards due to the inhalation of amorphous silica. Arch. Toxicol., 75, 625-634. https://doi.org/10.1007/s002040100266
  15. NIOSH (1998) Silica, crystalline, by XRD (filter redeposition): Method 7500, NIOSH Manual of Analytical Methods (NMAM), 4th ed. National Institue for Occupational Safety and Health.
  16. NIOSH (2002) Health effects of occupational exposure to respirable crystalline silica. NIOSH Hazard Review, National Institue for Occupational Safety and Health.
  17. NPT (2014) Silica, crystalline (respirable size), Report on Carcinogens, 13th ed. National Toxicology Program.
  18. OSHA (1996) Quartz and cristobalite in workplace atmosphere: Method ID-142. Division of Physical Measurements and Inorganic Analyses, OSHA Technical Center, Salt Lake City, Utah. Occupational Safety and Health Administration.
  19. Riede, R.G. (1961) Calcination of diatomaceous earth. U.S. Patent 3013981.
  20. Roskill Information Service Ltd. (1994) Economics of Diatomite, 7th ed., Roskill Information Services.
  21. SCOGS (2015) Select Committee on GRAS Substances Opinion: Silicates. U.S. Food & Drug Administration. http://wayback.archive-it.org/7993/20171031063508/https:/www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm260849.htm. Select Committee on GRAS Substances.
  22. WHO-IARC (2012) Arsenic, metals, fibrils and dusts. IARC Monographs on the evaluation of carcinogenic risks to humans 100C. World Health Organization International Agency for Research on Cancer.