DOI QR코드

DOI QR Code

Characteristics of Removal and Precipitation of Heavy Metals with pH change of Artificial Acid Mine Drainage

인공 산성광산배수의 pH변화에 의한 중금속 제거 및 침전 특성 연구

  • Lee, Min Hyeon (Center for Technology Policy, Future Resources Institute,) ;
  • Kim, Young Hun (Department of Earth and Environmental Sciences, Andong National University) ;
  • Kim, Jeong Jin (Department of Environmental Engineering, Andong National University)
  • Received : 2019.09.06
  • Accepted : 2019.11.06
  • Published : 2019.12.28

Abstract

In this study, heavy metal removal and precipitation characteristics with pH change were studied for artificial acid mine drainage. Artificial acid mine drainage was prepared using sulfates of iron, aluminum, copper, zinc, manganese which contained in acid mine drainage from abandoned mines. The single and mixed five heavy metal samples of Fe, Al, Cu, Zn, and Mn were prepared at initial concentrations of 30 and 70 mg/L. Fe and Al were mostly removed at pH 4.0 and 5.0, respectively, and other heavy metals gradually decreased with increasing pH. Concentration changes with increasing pH show generally similar trend for single and mixed heavy metal samples. The effect of removing heavy metals from aqueous solutions is not related to the initial concentration and depends on the pH change. XRD were used for mineral identification of precipitates and crystallinity of the mineral tended to increase with increasing pH. The precipitates that produced by decreasing the concentration of heavy metals in the aqueous solution composed of Fe-goethite(FeOOH), Al-basaluminite(Al4(SO4)(OH)10·4H2O), Cu-connellite(Cu19(OH)32(SO4)Cl4·3H2O) and tenorite(CuO), Zn-zincite(ZnO), and Mn-hausmannite(Mn3O4).

본 연구에서는 pH 변화에 따른 인공 산성광산배수로부터 중금속 제거와 침전물 생성에 대한 연구를 수행하였다. 인공 산성광산배수는 폐광산에서 유출되는 산성광산배수에 다량 포함된 Fe, Al, Cu, Zn, Mn의 황산염을 이용하여 제조하였다. 실험은 5가지의 중금속에 대하여 초기 농도 30과 70 mg/L의 단일 및 혼합 시료를 이용하여 수행하였다. Fe와 Al은 각각 pH 4.0과 5.0에서 대부분 제거되었으며 그 외 중금속은 pH가 증가함에 따라 서서히 감소하였다. 단일 및 혼합 중금속 시료에 대한 pH 증가에 따른 농도 변화는 대체로 유사한 경향을 나타낸다. 수용액으로부터 중금속 제거 효과는 초기 농도와 관계없이 유사한 경향을 나타내고 pH 변화에 따라 확연한 차이를 나타낸다. X-선회절분석을 이용하여 침전물에 대한 광물 감정을 수행하였으며 pH가 증가함에 따라 결정도가 증가하는 경향을 나타낸다. 수용액 내에 중금속 농도가 감소하면서 생성되는 침전물은 Fe-침철석(FeOOH), Al-배사알루미나이트(Al4(SO4)(OH)10·4H2O), Cu-코넬라이트Cu19(OH)32(SO4)Cl4·3H2O)와 테놀라이트(tenorite: CuO), Zn-진사이트(ZnO), Mn-하우스마나이트(Mn3O4)이다.

Keywords

References

  1. Adele, M.J., Richard, N., Collins, T. and David, W. (2011) Mineral species control of aluminum solubility in sulfate-rich acidic waters. Geochimica et Cosmochimica Acta, v.75, p.965-977. https://doi.org/10.1016/j.gca.2010.12.001
  2. Albertsson, J., Abrahams, S.C. and Kvick, A. (1989) Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Cryst., v.45, p.34-40. https://doi.org/10.1107/S0108768188010109
  3. Alpers, C.N., Blowes, D.W.,Nordstrom, D.K. and Jambor, J.L. (1994) Secondary minerals and acid mine-water chemistry. J.L Jambor, D.W Blowes (Eds.), Mineralogical association of canada, 22, Waterloo, Ontario, Canada. pp. 249-270.
  4. Asbrink, S. and Norrby, L.J. (1970) A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.'s. Acta Cryst., v.26, p.8-15. https://doi.org/10.1107/S0567740870001838
  5. Belitskus, D. (1970) Reaction of Aluminum With Sodium Hydroxide Solution as a Source of Hydrogen. J. Electrochem. Soc., v.117, p.1097-1099. https://doi.org/10.1149/1.2407730
  6. Bigham, J.M., Carlson, L.E. and Murad, E. (1994) Schwertmannite, a new iron oxyhydroxy-sulfate from Pyhasalmi, Finland, and other localities. Miner Mag, v.58, p.641-648. https://doi.org/10.1180/minmag.1994.058.393.14
  7. Bigham, J.M. and Nordstrom, D.K. (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Reviews in Mineralogy and Geochemistry, v.40, p.351-403. https://doi.org/10.2138/rmg.2000.40.7
  8. Carrero, S., Fernandez-Martinez, A., Perez-Lopez, R., Lee, D., Aquilanti, G., Poulain, A., Lozano, A. and Nieto, J. (2017) The nanocrystalline structure of basaluminite, an aluminum hydroxide sulfate from acid mine drainage. Amer. Mineral., v.102, p.2381-2389. https://doi.org/10.2138/am-2017-6059
  9. Carrero, S., Perez-Lopez, R., Fernandez-Martinez, A., Cruz-Hernandez, P., Ayora, C. and Poulain, A. (2015) The potential role of aluminium hydroxysulphates in the removal of contaminants in acid mine drainage. Chem. Geol., v.417, p.414-423. https://doi.org/10.1016/j.chemgeo.2015.10.020
  10. Digne, M., Sautet, P., Raybaud, P., Toulhoat, H. and Rtacho, E. (2002) Structure and Stability of Aluminum Hydroxides: A Theoretical Study. J. Phys. Chem. B., v.106, p.5155-5162. https://doi.org/10.1021/jp014182a
  11. Espana, J.S., Pamo, E.L., Santofimia, E., Asuvire, O., Reyes, J. and Barettino, D. (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl. Geochem. 20, 1320-1356. https://doi.org/10.1016/j.apgeochem.2005.01.011
  12. Gayer, K.H. and Leo, W. (1956) The Solubility of Ferrous Hydroxide and Ferric Hydroxide in Acidic and Basic Media at $25^{\circ}$. J. Phys. Chem. v.60, p.1569-1571 https://doi.org/10.1021/j150545a021
  13. Hayrapetyan, S.S., Mangasaryan, L.G., Tovmasyan, M.R. and Khachatryan, H.G. (2006) Precipitation of aluminum hydroxide from sodium aluminate, by treatment with formalin, and preparation of aluminum oxide. Acta Chromatographica, v.16, p.192-203.
  14. Huber, N.K. and Garrels, R.M. (1953) Relation of pH and oxidation potential to sedimentary iron mineral formation. Econ. Geology, v.48, p.337-357. https://doi.org/10.2113/gsecongeo.48.5.337
  15. Jarosch, D. (1987) Crystal structure refinement and reflectance measurements of hausmannite, $Mn_3O_4$. Mineral. Petrol., v.37, p.15-23. https://doi.org/10.1007/BF01163155
  16. Jasim, S.Y., Fraser, J.C., Huck, P.M., Urfer, D. and Anderson, W.B. (1997) Pilot scale investigation of the reduction of aluminum in drinking water. Paper presented at the 32nd Central Canadian Symp. on Water Pollut. Res., February 10-11, Canada Centre for Inland Waters, Burlington, Ontario.
  17. Jekel, M.R. (1991) Aluminum in water: How it can be removed? Use of aluminum salts in treatment. Proc. of the Int. Water Supply Ass., Copenhagen, Denmark, May 25-31.
  18. Kim, J.J. and Kim, S.J. (2004) Seasonal factor controlling mineral precipitation in the acid mine drainage at Donghe coal mine, Korea. Science of the total Environ., v.325, p.181-191. https://doi.org/10.1016/j.scitotenv.2003.10.038
  19. Licsko, I. and Ssakal, F. (1988) Possibility of lowering the aluminum concentration in drinking water from water works drawing on surface water in Hungary. In: M Astruc and JN Lester (eds.) Heavy Metal in the Hydrological Cycle, Selper Ltd., UK. pp.631-636.
  20. McDonald, D.G. and Grandt, A.F. (1981) Limestone- lime treatment of acid mine drainage-full scale. EPA Project Summary, EPA-600/S7-81-033.
  21. Nordstrom, D.K., Alpers, C.N., Ptacek, C. and Blowes, D.W. (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol., v.34, p.254-258. https://doi.org/10.1021/es990646v
  22. Park, S.M., Yoo, J.C., Ji, S.W., Yang, J.S. and Baek, K.T. (2013) Selective recovery of Cu, Zn, and Ni from acid mine drainage. Envir. Geochem. and Health, v. 35, p. 735-743. https://doi.org/10.1007/s10653-013-9531-1
  23. Park, S.M., Yoo, J.C., Ji, S.W., Yang, J.S. and Baek, K.T. (2015) Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH. Envir. Sci. and Poll. Res. v.22, p.3013-3022. https://doi.org/10.1007/s11356-014-3536-x
  24. Pollard, A.M., Thomas, R.G. and Williams, P.A. (1990) Connellite: stability relationships with other secondary copper minerals. Mineral. Mag., v.54, p.425-430. https://doi.org/10.1180/minmag.1990.054.376.08
  25. Sanchez-Espana, A., Yusta, I. and Diez-Ercilla, M. (2011) Schwertmannite and hydrobasaluminite: A re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes. Applied Geochem., v.26, p.1752-1774. https://doi.org/10.1016/j.apgeochem.2011.06.020
  26. Sherriff, B.L., Sidenko, N.V. and Salzsauler, K.A. (2007) Differential settling and geochemical evolution of tailings' surface water at the Central Manitoba Gold Mine. Appl. Geochem. v.22, p.342-356. https://doi.org/10.1016/j.apgeochem.2006.11.004
  27. Smith, I.E. (1972) Hydrogen generation by means of the aluminum/water reaction. J. of Hydronautics, v.6, p.106-109. https://doi.org/10.2514/3.48127
  28. Srinivasan, P.T., Viraraghavan, T. and Subramanian, K.S. (1999) Aluminium in drinking water. An overview Water SA, v.25, p.47-55.
  29. Wei, X. C., Viadero, R. C. and Buzby, K. M. (2005). Recovery of iron and aluminum from acid mine drainage by selective precipitation. Envir. Eng. Sci., 22, 745-755. https://doi.org/10.1089/ees.2005.22.745