DOI QR코드

DOI QR Code

무막줄기세포추출물의 3T3-L1 세포에서 포도당 흡수 촉진 효과

Membrane Free Stem Cell Extract from Adipose Tissue Enhances Glucose Uptake in 3T3-L1 Cells

  • Kim, Ji Hyun (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Min Jeong (Department of Food Science and Nutrition, Pusan National University) ;
  • Park, Hye Sook (T-STEM Co., Ltd.) ;
  • Kim, Young Sil (T-STEM Co., Ltd.) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University)
  • 투고 : 2019.10.01
  • 심사 : 2019.10.28
  • 발행 : 2019.12.30

초록

Objectives: We investigated whether membrane free stem cell extract from adipose tissue (MFSCE) has anti-diabetic effect. Methods: To determine glucose uptake effect of MFSCE, we carried out glucose uptake assay in 3T3-L1 adipocytes. The regulatory mechanisms of MFSCE on glucose uptake were examined by Western blot analysis. Results: When MFSCE was treated to adipocytes at the concentration of 0.5, 1, 2.5, and 5 ㎍/mL, 2-deoxyglucose-6-phosphate uptake was elevated approximately 1.8-fold compared to cells not treated with MFSCE. It indicated that MFSCE enhances glucose uptake in 3T3-L1 adipocytes. In addition, MFSCE reduced phosphorylation of insulin receptor substrate-1 at serine 307 and induced Akt and glucose transporter 4 protein expressions that were related to insulin signaling. Furthermore, MFSCE regulated adenosine monophosphate-activated protein kinase (AMPK) pathway by increases of increase phosphorylation of AMPK and acetyl-CoA carboxylase that were related to AMPK pathway. Conclusions: These results indicated that MFSCE promotes glucose uptake via modulation of insulin signaling and AMPK pathway. Therefore, MFSCE could be a promising agent for treatment of diabetes mellitus.

키워드

참고문헌

  1. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006 ; 212 : 167-78. https://doi.org/10.1016/j.taap.2006.01.003
  2. Ward WK, Beard JC, Halter JB, Pfeifer MA, Porte D. Pathophysiology of insulin secretion in non-insulin-dependent diabetes mellitus, Diabetes Care. 1984 ; 7 : 491-502. https://doi.org/10.2337/diacare.7.5.491
  3. Action to Control Cardiovascular Risk in Diabetes Study Group. 2008. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008 ; 358 : 2545-59. https://doi.org/10.1056/NEJMoa0802743
  4. Bouchoucha M, Uzzan B, Cohen R. Metformin and digestive disorders. Diabetes Metab. 2011 ; 37 : 90-6. https://doi.org/10.1016/j.diabet.2010.11.002
  5. Hussein Z, Wentworth JM, Nankervis AJ, Proietto J, Colman PG. Effectiveness and side effects of thiazolidinediones for type 2 diabetes: real-life experience from a tertiary hospital. Med J Aust. 2004 ; 181 : 536-9. https://doi.org/10.5694/j.1326-5377.2004.tb06441.x
  6. Seo GS. Stem cell properties of therapeutic potential. Korean J Gastroenterol. 2011 ; 58 : 125-32. https://doi.org/10.4166/kjg.2011.58.3.125
  7. Fernyhough ME, Hausman GJ, Guan LL, Okine E, Moore SS, Dodson MV. Mature adipocytes may be a source of stem cells for tissue engineering. Biochem Biophys Res Commun. 2008 ; 368 : 455-7. https://doi.org/10.1016/j.bbrc.2008.01.113
  8. Hu L, Zhao J, Liu J, Gong N, Chen L. Effects of adipose stem cell-conditioned medium on the migration of vascular endothelial cells, fibroblasts and keratinocytes. Exp Ther Med. 2013 ; 5 : 701-6. https://doi.org/10.3892/etm.2013.887
  9. Jeon GS, Im W, Shim YM, Lee M, Kim MJ, Hong YH, et al. Neuroprotective effect of human adipose stem cell-derived extract in amyotrophic lateral sclerosis. Neurochem Res. 2016 ; 41 : 913-23. https://doi.org/10.1007/s11064-015-1774-z
  10. Rhie JW, Kim KJ. Adipose stem cell therapy: present, future. J Korean Wound Manag Soc. 2016 ; 12 : 39-45.
  11. Lee YJ, Baek SE, Lee S, Cho YW, Jeong YJ, Kim KJ, et al. Wound healing effect of adipose stem cell derived extracellular matrix sheet on full thickness skin defect rat model: Histological and immunohistochemical study. Int Wound J. 2019 ; 16 : 286-96. https://doi.org/10.1111/iwj.13030
  12. Yuan B, Broadbent JA, Huan J, Yang H. The effects of adipose stem cell-conditioned media on fibrogenesis of dermal fibroblasts stimulated by transforming growth factor-${\beta}1$. J Burn Care Res. 2017 ; 39 : 129-40.
  13. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 ; 65 : 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  14. Fakhoury H, Osman S, Ghazale N, Dahdah N, El-Sibai M, Kanaan A. Enhanced glucose uptake in phenylbutyric acid-treated 3T3-L1 adipocytes. Cell Tissue Biol. 2018 ; 12 : 48-56. https://doi.org/10.1134/S1990519X18010066
  15. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005 ; 365 : 1333-46. https://doi.org/10.1016/S0140-6736(05)61032-X
  16. Lee JM. Antihyperglycemic agent combination therapy for patients with type 2 diabetes mellitus. J Korean Med Assoc. 2014 ; 57 : 435-43. https://doi.org/10.5124/jkma.2014.57.5.435
  17. Berger W. Incidence of severe side effects during therapy with sulfonylureas and biguanides. Horm Metab Res. 1985 ; 15 : 111-5. https://doi.org/10.1055/s-2007-1018645
  18. Levitz SM, Diamond RD. A rapid colorimetric assay of fungal viability with the tetrazolium salt MTT. J Infect Dis. 1985 ; 152 : 938-45. https://doi.org/10.1093/infdis/152.5.938
  19. de Herreros RD, Birnbaum MJ. The acquisition of increased insulin-responsive hexose transport in 3T3-L1 adipocytes correlates with expression of a novel transporter gene. J Biol Chem. 1989 ; 264 : 19994-9. https://doi.org/10.1016/S0021-9258(19)47209-8
  20. Yang YC, Hwang JH, Hong SJ, Hsu HK. Enhancement of glucose uptake in 3T3-L1 adipocytes by Toona sinensis leaf extract. Kaohsiung J Med Sci. 2003 ; 19 : 327-32. https://doi.org/10.1016/S1607-551X(09)70433-4
  21. Carlson CJ, White MF, Rondinone CM. Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochem Biophys Res Commun. 2004 ; 316 : 533-9. https://doi.org/10.1016/j.bbrc.2004.02.082
  22. Mazibuko SE, Joubert E, Johnson R, Louw J, Opoku AR, Muller CJ. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol Nutr Food Res. 2015 ; 59 : 2199-208. https://doi.org/10.1002/mnfr.201500258
  23. Holman GD, Kasuga M. From receptor to transporter: insulin signalling to glucose transport. Diabetologia. 1997 ; 40 : 991-1003. https://doi.org/10.1007/s001250050780
  24. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012 ; 13 : 251-62. https://doi.org/10.1038/nrm3311
  25. Ke R, Xu Q, Li C, Luo L, Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018 ; 42 : 384-92. https://doi.org/10.1002/cbin.10915
  26. Paek HJ, Kim C, Williams SK. Adipose stem cell-based regenerative medicine for reversal of diabetic hyperglycemia. World J Diabetes. 2014 ; 5 : 235-43. https://doi.org/10.4239/wjd.v5.i3.235
  27. Tan B, Luan Z, Wei X, He Y, Wei G, Johnstone BH, et al. AMP-activated kinase mediates adipose stem cell-stimulated neuritogenesis of PC12 cells. Neuroscience. 2011 ; 181 : 40-7. https://doi.org/10.1016/j.neuroscience.2011.02.038

피인용 문헌

  1. 최근 10년간 한방비만학회지의 연구동향 분석: 2010-2019년 한방비만학회지 게재논문을 중심으로 vol.20, pp.2, 2019, https://doi.org/10.15429/jkomor.2020.20.2.149