DOI QR코드

DOI QR Code

Preparation and Performance Analysis of Ophthalmic Polymer Using SWCNT and SWCCNT

  • Shin, Su-Mi (Department of Optometry & Vision Science, Daegu Catholic University) ;
  • Sung, A-Young (Department of Optometry & Vision Science, Daegu Catholic University)
  • Received : 2019.07.11
  • Accepted : 2019.10.24
  • Published : 2019.12.27

Abstract

The purpose of this study is to fabricate an ophthalmic lens by copolymerizing two types of carbon nanotubes and hydrophilic hydrogel lens materials, and to investigate its application as an ophthalmic lens material by analyzing its physical properties and antimicrobial effect. For polymerization, HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate), a crosslinking agent, and AIBN (azobisisobutyronitrile), an initiator, are used as a basic combination, and a single-walled carbon nanotube and a single-walled, carboxylic-acid-functionalized carbon nanotube are used as additives. To analyze the physical properties, the water content, refractive index, breaking strength, and antimicrobial effect of the fabricated lenses are measured. The fabricated lenses satisfies all the basic properties of the basic hydrogel ophthalmic lens. The water content increases with increasing amount of additive and decreases with addition of 0.2 % ratio of nanoparticles. The refractive index is inversely proportional to the water content result. As a result of the antimicrobial test of the fabricated lens, the addition of carbon nanotubes shows an excellent antimicrobial effect. Therefore, it is considered that the fabricated lens can be applied as a functional material for basic ophthalmic hydrogel lenses.

Keywords

References

  1. D. H. Kim and A. Y. Sung, J. Korean Chem. Soc., 61, 97 (2017). https://doi.org/10.5012/jkcs.2017.61.3.97
  2. M. J. Lee and A. Y. Sung, J. Nanosci. Nanotechnol., 17, 7400 (2017). https://doi.org/10.1166/jnn.2017.14767
  3. M. J. Lee and A. Y. Sung, J. Nanosci. Nanotechnol., 19, 6225 (2019). https://doi.org/10.1166/jnn.2019.17036
  4. M. D. Wilcox, Optom. Vis. Sci., 84, 273 (2007). https://doi.org/10.1097/OPX.0b013e3180439c3e
  5. R. Salomoni, P. Leo, A. F. Montemor, B. G. Rinaldi and M. Rodrigues, Nanotechnol. Sci. Appl., 10, 15 (2017).
  6. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta and S. Mukherji, Acta Biomater., 4, 707 (2008). https://doi.org/10.1016/j.actbio.2007.11.006
  7. M. J. Lee, H. M. Lee and A. Y. Sung, J. Nanosci. Nanotechnol., 19, 4406 (2019). https://doi.org/10.1166/jnn.2019.16689
  8. D. H. Kim A. Y. Sung and T. H. Kim, Korean J. Vis. Sci., 16, 89 (2014).
  9. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  10. M. F De Volder, S. H. Tawfick, R. H. Baughman and A. J. Hart, Science, 339, 535 (2013). https://doi.org/10.1126/science.1222453
  11. J. Venkatesan, R. Jayakumar, A. Mohandas, I. Bhatnagar and S. K. Kim, Materials (Basel), 7, 3946 (2014). https://doi.org/10.3390/ma7053946
  12. S. M. Dizaj, A. Mennati, S. Jafari, K. Khezri and K. Adibkia, Adv. Pharm. Bull., 5, 19 (2015).
  13. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Nature, 381, 678 (1996). https://doi.org/10.1038/381678a0
  14. S. Kang, M. Pinault, L. D. Pfefferle and M. Elimelech, Langmuir, 23, 8670 (2007). https://doi.org/10.1021/la701067r