DOI QR코드

DOI QR Code

Power Charge Scheduling and Charge-Ready Battery Allocation Algorithms for Real-Time Drones Services

실시간 드론 서비스를 위한 전원 충전 스케쥴링과 충전 배터리 할당 알고리즘

  • Received : 2019.06.19
  • Accepted : 2019.10.09
  • Published : 2019.12.31

Abstract

The Unmanned Aerial Vehicle (UAV) is one of the most precious inventions of Internet of things (IOT). UAV faces the necessity to charge battery or replace battery from the charging stations during or between services. We propose scheduling algorithms for drone power charging (SADPC). The basic idea of algorithm is considering both a deadline (for increasing deadline miss ratio) and a charging time (for decreasing waiting time) to decide priority on charging station among drones. Our simulation results show that our power charging algorithm for drones are efficient in terms of the deadline miss ratio as well as the waiting time in general in compare to other conventional algorithms (EDF or SJF). Also, we can choose proper algorithms for battery charge scheduling and charge ready battery allocation according to system parameters and user requirements based on our simulation.

무인항공기는 사물인터넷 분야에서 중요한 발명중의 하나이며 많은 응용에서 사용되고 있다. 특히 소형 무인항공기(드론)는 배터리로 동작을 하기 때문에 서비스 도중 또는 서비스간에 충전소에서 배터리 충전과 배터리 교체가 필요하다. 배터리 충전소가 제한된 상황에서 먼저 충전할 드론을 스케쥴링하고 충전된 배터리를 할당하는 문제는 중요하다. 본 논문에서는 효율적인 드론의 배터리 충전 스케쥴링 알고리즘을 제안하였다. 드론을 위한 배터리 충전 스케쥴링 알고리즘의 기본 아이디어는 실시간처리 환경에서 마감시간을 만족하기 위하여 마감시간을 고려함(EDF)과 동시에 대기시간을 줄이기 위해서 충전시간을 동시에 고려(SJF)하였다. 즉, 마감시간이 짧을수록 그리고 충전시간이 짧을수록 높은 우선순위를 부여하여 마감시간 준수율을 높이고 평균 대기시간을 줄임으로서 결과적으로 마감시간 준수율향상과 대기시간 단축이라는 두가지 측면을 동시에 만족할 수 있는 기법을 고려하였다. 이미 충전된 배터리의 할당에서는 충전시간이 길수록 높은 우선순위를 배정하므로서 평균 대기시간을 줄일 수 있다. 시뮬레이션 결과 제안 알고리즘을 이용하여 마감시간 준수율과 평균 대기시간 측면에서 기존 알고리즘(EDF와 SJF)과 비교하여 좋은 성능을 보임을 확인하였다. 시뮬레이션 결과를 바탕으로시스템 파라메터와 사용자 요구사항에 따라 배터리 충전 스케쥴링과 배터리 할당 알고리즘을 합리적으로 선택할 수 있다.

Keywords

References

  1. H. Shakhatreh, A. Sawalmeh, A. Al-Fuquaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, "Unmanned Aerial Vehicles: A Survey on Civil Applications and Key Research Challenges," arXiv:1805. 00881v1 [cs.RO], 19 Apr. 2018.
  2. M. C. Silverman, D. Niles, B. Jung, and S. Sukhatme, "Staying alive: a Docking Station for Autonomous Robot Charging." in Proceedings IEEE International Conference on Robotics and Automation, pp.1050-1055, Washington D. C., USA, May 2002.
  3. G. B. Parker and R. S. Zbeda, "Controlled use of a robot colony power supply," Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp.3491- 3496, 2005.
  4. P. Zebrowski and R. Vaughan, "Recharging robot teams: a tanker approach," Proceedings of the 2005 International Conference on Advanced Robotics, Seattle, Washington, USA, Jul. 2005.
  5. K. H. Kim, H. D. Choi, S. Yoon, K. W. Lee, H. S. Ryu, C. K. Woo, and Y. K. Kwak, "Development of Docking system for mobile robots using cheap Infrared Sensors," Proceedings of the 1st International Conference on Sensing Technology, pp.287-291, Palmerston North, New Zealand, Nov. 2005.
  6. T. S. Alemayehu and J. H. Kim, "Efficient Nearest Neighbor Heuristic TSP Algorithms for Reducing Data Acquisition Latency of UAV Relay WSN," Wireless Personal Communications. Vol.95, Issue 3, pp.3271-3285, Aug. 2017. https://doi.org/10.1007/s11277-017-3994-9
  7. F. P. Kemper, K. A. O. Suzuki, and J. R. Morrison, "UAV Consumable Replenishment: Design Concepts for Automated Service Stations," Journal of Intelligent & Robotic Systems, Vol.61, Issue 1-4, pp.369-397, Jan. 2011. https://doi.org/10.1007/s10846-010-9502-z
  8. A. Silberschatz, P. B. Galvin, and G. Gagne, "Operating Systems Concepts with Java," John Wiley and Sons, Inc., Eighth edition, Chapter 5, pp.183-239, 2010.
  9. Y. A. Kelkile, "Efficient Delivery and Charging Algorithms for Drone," Master's Thesis, Aug. 2016.
  10. Y. M. Song, K. C. Ko, B. H. Lee, and J. H. Kim, "Process Scheduling Policy Based on Rechargeable Power Resource in Wireless Sensor Networks," APWeb Workshops, pp. 405-409, 2006.
  11. Ms. Rukhsar Khan, and Mr. Gaurav Kakhani, "Analysis of Priority Scheduling Algorithm on the Basis of FCFS & SJF for Similar Priority Jobs," International Journal of Computer Science and Mobile Computing, Vol.4, Issue 9, pp.324-331, Sep. 2015.
  12. Y. Choi and P. M. Schonfeld, "Optimization of Multi- Package Drone Deliveries Considering Battery Capacity," TRB 96th Annual Meeting, 2017.
  13. M. Tajrian and J. H. Kim, "Efficient Scheduling Algorithm for Drone Power Charging," Korea Information Processing Society 2019 Spring Conference, pp.60-61, May 2019.
  14. Y. H. Ho, Y. R. Chen, and L. J. Chen, "Krypto: Assisting Search and Rescue Operations using Wi-Fi Signal with UAV," Proc. of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, 2015.
  15. D. He, H. Ren, W. Hua, G. Pan, G. Pan, S. Li, and Z. Wu, "FlyingBuddy: augment human mobility and perceptibility," Proc. of the 13th International Conference on Ubiquitous Computing, 2011.
  16. N. Uchida, N. Kawamura, T. Ishida, and Y. Shibata, "Proposal of Autonomous Flight Wireless Nodes with Delay Tolerant Networks for Disaster use," Proc. of Int. Conf. on Innovative Mobile and Internet Services in Ubiquitous Computing, pp.146-151, 2014.
  17. D. Mirk and H. Hlavacs, "Virtual Tourism with Drones: Experiments and Lag Compensation," Proc. of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, pp.45-50, May 2015.
  18. Yonatan Ayalew Kelkile, Temesgen Seyoum, Jai-Hoon Kim, "Efficient Heuristic Algorithms for Drone Package Delivery Route," Korea Information Processing Society Spring Conference, 2016. 4.
  19. P. J. M. Elands, J. K. de Kraker, J. Laarakkers, J. G. E. Olk, and J. J. Schonagen, "Technical Aspects Concerning the Safe and Secure Use of Drones," TNO report TNO 2015 R11721, Final Report, March 2016.
  20. P. Manzoni, C. Calafate, J.-C.s Cano, and E. Mota, "Epidgeons: Combining Drones and DTNs Technologies to Provide Connectivity in Remote Areas," Proc. of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, 2015.
  21. N. Uchida, N. Kawamura, T. Ishida, and Y. Shibata, "Resilient Network with Autonomous Flight Wireless Nodes based on Delay Tolerant Networks," IT CoNvergence PRActice, Vol.2, No.3. pp.1-13, 2014.