DOI QR코드

DOI QR Code

Transduced Tat-CIAPIN1 reduces the inflammatory response on LPS- and TPA-induced damages

  • Yeo, Hyeon Ji (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Shin, Min Jea (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • You, Ji Ho (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Jeong Su (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Min Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae Won (Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Eum, Won Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • Received : 2019.10.14
  • Accepted : 2019.10.21
  • Published : 2019.12.31

Abstract

Cytokine-induced apoptosis inhibitor 1 (CIAPIN1), known as an anti-apoptotic and signal-transduction protein, plays a pivotal role in a variety of biological processes. However, the role of CIAPIN1 in inflammation is unclear. We investigated the protective effects of CIAPIN1 in lipopolysaccharide (LPS)-exposed Raw 264.7 cells and against inflammatory damage induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in a mouse model using cell-permeable Tat-CIAPIN1. Transduced Tat-CIAPIN1 significantly reduced ROS production and DNA fragmentation in LPS-exposed Raw 264.7 cells. Also, Tat-CIAPIN1 inhibited MAPKs and NF-κB activation, reduced the expression of Bax, and cleaved caspase-3, COX-2, iNOS, IL-6, and TNF-α in LPS-exposed cells. In a TPA-induced animal model, transduced Tat-CIAPIN1 drastically decreased inflammation damage and inhibited COX-2, iNOS, IL-6, and TNF-α expression. Therefore, these findings suggest that Tat-CIAPIN1 might lead to a new strategy for the treatment of inflammatory skin disorders.

Keywords

References

  1. Fan G, Jiang X, Wu X et al (2016) Anti-inflammatory activity of Tanshinone IIA in LPS-stimulated RAW264.7 macrophages via miRNAs and TLR4-NF-kappaB pathway. Inflammation 39, 375-384 https://doi.org/10.1007/s10753-015-0259-1
  2. Duffield JS (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci 104, 27-38 https://doi.org/10.1042/CS20020240
  3. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H and Ikeda H (2003) Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 100, 171-194 https://doi.org/10.1016/j.pharmthera.2003.08.003
  4. Chung HY, Cesari M, Anton S et al (2009) Molecular inflammation as an underlying mechanism of aging: the anti-inflammatory action of calorie restriction. Ageing Res Rev 8, 18-30 https://doi.org/10.1016/j.arr.2008.07.002
  5. Korhonen R, Lahti A, Kankaanranta H and Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4, 471-479 https://doi.org/10.2174/1568010054526359
  6. Grilli M and Memo M (1999) Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ 6, 22-27 https://doi.org/10.1038/sj.cdd.4400463
  7. Lawrence T, Gilroy DW, Colville-Nash PR and Willoughby DA (2001) Possible new role for NF-kB in the resolution of inflammation. Nat Med 7, 1291-1297 https://doi.org/10.1038/nm1201-1291
  8. Riehemann K, Behnke B and Schulze-Osthoff K (1999) Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-kB. FEBS Lett 442, 89-94 https://doi.org/10.1016/S0014-5793(98)01622-6
  9. Ivashkiv LB (2011) Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur J Immunol 41, 2477-2481 https://doi.org/10.1002/eji.201141783
  10. Sica A and Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122, 787-795 https://doi.org/10.1172/JCI59643
  11. Shibayama H, Takai E, Matsumura I et al (2004) Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J Exp Med 199, 581-592 https://doi.org/10.1084/jem.20031858
  12. Li X, Wu K and Fan D (2010) CIAPIN1 as a therapeutic target in cancer. Expert Opin Ther Targets 14, 603-610 https://doi.org/10.1517/14728221003774127
  13. Hao Z, Li X, Qiao T, Du R, Hong L and Fan D (2006) CIAPIN1 confers multidrug resistance by upregulating the expression of MDR-1 and MRP-1 in gastric cancer cells. Cancer Biol Ther 5, 261-266 https://doi.org/10.4161/cbt.5.3.2381
  14. Li X, Fan R, Zou X et al (2008) Reversal of multidrug resistance of gastric cancer cells by down-regulation of CIAPIN1 with CIAPIN1 siRNA. Mol Biol 42, 102-109
  15. Park KA, Yun N, Shin DI et al (2011) Nuclear translocation of anamorsin during drug-induced dopaminergic neurodegeneration in culture and in rat brain. J Neural Transm 118, 433-444 https://doi.org/10.1007/s00702-010-0490-8
  16. Wang X, Pan J and Li J (2015) Cytokine-induced apoptosis inhibitor 1 inhibits the growth and proliferation of multiple myeloma. Mol Med Res 12, 2056-2062 https://doi.org/10.3892/mmr.2015.3656
  17. Sethi G, Shanmugam MK, Ramachandran L, Kumar AP and Tergaonkar V (2012) Multifaceted link between cancer and inflammation. Biosci Rep 32, 1-15 https://doi.org/10.1042/BSR20100136
  18. Sethi G and Tergaonkar V (2009) Potential pharmacological control of the NF-kappaB pathway. Trends Pharmacol Sci 30, 313-321 https://doi.org/10.1016/j.tips.2009.03.004
  19. Lemmon MA and Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141, 1117-1134 https://doi.org/10.1016/j.cell.2010.06.011
  20. El-Andaloussi S, Holm T and Langel U (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 11, 3597-3611 https://doi.org/10.2174/138161205774580796
  21. Wadia JS and Dowdy SF (2002) Protein transduction technology. Curr Opin Biotechnol 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
  22. Ramsey JD and Flynn NH (2015) Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther 54, 78-86 https://doi.org/10.1016/j.pharmthera.2015.07.003
  23. Zhang X, Li Y, Cheng Y et al (2015) Tat PTD-endostatin: A novel anti-angiogenesis protein with ocular barrier permeability via eye-drops. Biochim Biophys Acta 1850, 1140-1149 https://doi.org/10.1016/j.bbagen.2015.01.019
  24. Sakurazawa M, Katsura K, Saito M, Asoh S, Ohta S and Katayama Y (2012) Mild hypothermia enhanced the protective effect of protein therapy with transductive anti-death FNK protein using a rat focal transient cerebral ischemia model. Brain Res 1430, 86-92 https://doi.org/10.1016/j.brainres.2011.10.041
  25. Kim MJ, Park M, Kim DW et al (2015) Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model. Biomaterials 64, 45-56 https://doi.org/10.1016/j.biomaterials.2015.06.015
  26. Kim MJ, Kim DW, Park JH et al (2013) PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages. Free Radic Biol Med 63, 432-445 https://doi.org/10.1016/j.freeradbiomed.2013.06.005
  27. Shin MJ, Kim DW, Lee YP et al (2014) Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury. Free Radic Biol Med 67, 195-210 https://doi.org/10.1016/j.freeradbiomed.2013.10.815
  28. Yeo HJ, Shin MJ, Yeo EJ et al (2019) Tat-CIAPIN1 inhibits hippocampal neuronal cell damage through the MAPK and apoptotic signaling pathways. Free Radic Biol Med 135, 68-78 https://doi.org/10.1016/j.freeradbiomed.2019.02.028
  29. Moon JI, Han MJ, Yu SH et al (2019) Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells. BMB Rep 52, 324-329 https://doi.org/10.5483/BMBRep.2019.52.5.195
  30. Yeo HJ, Yeo EJ, Shin MJ et al (2018) Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model. BMB Rep 51, 362-367 https://doi.org/10.5483/BMBRep.2018.51.7.101
  31. Jaiswal YK, Jaiswal MK, Agrawal V and Chaturvedi MM (2009) Bacterial endotoxin (LPS)-induced DNA damage in preimplanting embryonic and uterine cells inhibits implantation. Fertil Steril 91, 2095-2103 https://doi.org/10.1016/j.fertnstert.2008.04.050
  32. Uto T, Suangkaew N, Morinaga O, Kariyazono H, Oiso S and Shoyama Y (2010) Eriobotryae folium extract suppresses LPS-induced iNOS and COX-2 expression by inhibition of NF-kappaB and MAPK activation in murine macrophages. Am J Chin Med 38, 985-994 https://doi.org/10.1142/S0192415X10008408
  33. Gao Y, Jiang W, Dong C et al (2012) Anti-inflammatory effects of sophocarpine in LPS-induced RAW 264.7 cells via NF-${\kappa}B$ and MAPKs signaling pathways. Toxicol In Vitro 26, 1-6 https://doi.org/10.1016/j.tiv.2011.09.019
  34. Cao F, Liu T, Xu Y, Xu D and Feng S (2015) Curcumin inhibits cell proliferation and promotes apoptosis in human osteoclastoma cell through MMP-9, NF-${\kappa}B$ and JNK signaling pathways. Int J Clin Exp Pathol 8, 6037-6045
  35. Kim KN, Heo SJ, Yoon WJ et al (2010) Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-${\kappa}B$ and MAPKs in lipopolysaccharideinduced RAW 264.7 macrophages. Eur J Pharmacol 649, 369-375 https://doi.org/10.1016/j.ejphar.2010.09.032
  36. Ki YW, Park JH, Lee JE, Shin IC and Koh HC (2013) JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol Lett 218, 235-245 https://doi.org/10.1016/j.toxlet.2013.02.003
  37. Barton GM and Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300, 1524-1525 https://doi.org/10.1126/science.1085536
  38. Langford MP, McGee DJ, Ta KH, Redens TB and Texada DE (2011) Multiple caspases mediate acute renal cell apoptosis induced by bacterial cell wall components. Ren Fail 33, 192-206 https://doi.org/10.3109/0886022X.2011.553304
  39. Yun N, Lee YM, Kim C et al (2014) Anamorsin, a novel caspase-3 substrate in neurodegeneration. J Biol Chem 289, 22183-22195 https://doi.org/10.1074/jbc.M114.552679
  40. Wang J, Li Q, Wang C et al (2016) Knock-down of CIAPIN1 sensitizes K562 chronic myeloid leukemia cells to Imatinib by regulation of cell cycle and apoptosisassociated members via NF-kB and ERK5 signaling pathways. Biochem Pharmacol 99, 132-145 https://doi.org/10.1016/j.bcp.2015.12.002
  41. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H and Ikeda H (2003) Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 100, 171-194 https://doi.org/10.1016/j.pharmthera.2003.08.003
  42. Khan S, Shin EM, Choi RJ et al (2011) Suppression of LPS-induced inflammatory and NF-${\kappa}B$ responses by anomalin in RAW 264.7 macrophages. J Cell Biochem 112, 2179-2188 https://doi.org/10.1002/jcb.23137
  43. Su YW, Chiou WF, Chao SH, Lee MH, Chen CC and Tsai YC (2011) Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-${\kappa}B$ and AP-1 signaling pathways. Int Immunopharmacol 11, 1166-1172 https://doi.org/10.1016/j.intimp.2011.03.014
  44. Stanley PL, Steiner S, Havens M and Tramposch KM (1991) Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol 4, 262-271 https://doi.org/10.1159/000210960
  45. Hoffmann A and Baltimore D (2006) Circuity of nuclear factor kappaB signaling. Immunol Rev 210, 171-186 https://doi.org/10.1111/j.0105-2896.2006.00375.x
  46. Baud V and Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discovery 8, 33-40 https://doi.org/10.1038/nrd2781
  47. Kundu JK, Shin YK and Surh YJ (2006) Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets. Biochem Pharmacol 72, 1506-1515 https://doi.org/10.1016/j.bcp.2006.08.005
  48. Murakami A, Nakamura Y, Torikai K et al (2000) Inhibitory effect of citrus nobiletin on phorbol esterinduced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res 60, 5059-5066
  49. Chung WY, Park JH, Kim MJ et al (2007) Xanthorrhizol inhibits 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skincarcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kappa B. Carcinogen 28, 1224-1231 https://doi.org/10.1093/carcin/bgm005