참고문헌
- S. Ruder. (2017). An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098.
- R. Caruana. (1997). Multitask learning. Machine learning, 28(1), 41-75. https://doi.org/10.1023/A:1007379606734
- M. Long & J. Wang. (2015). Learning multiple tasks with deep relationship networks. arXiv preprint arXiv:1506.02117, 2.
- Y. Zhang, Y. Wei & Q. Yang. (2018). Learning to multitask. In Advances in Neural Information Processing Systems (pp. 5771-5782).
- T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado & J. Dean. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).
- J. Pennington, R. Socher & C. Manning. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
- P. Bojanowski, E. Grave, A. Joulin & T. Mikolov. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135-146. https://doi.org/10.1162/tacl_a_00051
- M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee & L. Zettlemoyer. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.
- J. Devlin, M. W. Chang, K. Lee & K. Toutanova. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 .
- Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov & Q. V. Le. (2019). XLNet: Generalized Autoregressive Pretraining for Language Understanding. arXiv preprint arXiv:1906.08237 .
- Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen & V. Stoyanov. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
- A. Lamurias, D. Sousa, L. A. Clarke & F. M. Couto. (2019). BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies. BMC bioinformatics, 20(1), 10. https://doi.org/10.1186/s12859-018-2584-5
- C. Lyu, B. Chen, Y. Ren & D. Ji. (2017). Long short-term memory RNN for biomedical named entity recognition. BMC bioinformatics, 18(1), 462. https://doi.org/10.1186/s12859-017-1868-5
- A. R. Tuor, R. Baerwolf, N. Knowles, B. Hutchinson, N. Nichols & R. Jasper. (2018, June). Recurrent neural network language models for open vocabulary event-level cyber anomaly detection. In Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence.
- S. KP. (2019). RNNSecureNet: Recurrent neural networks for Cyber security use-cases. arXiv preprint arXiv:1901.04281 .
- G. Kim, K. Kim, J. Jo & H. Lim. (2018). Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs. Journal of the Korea Convergence Society, 9(12), 47-52. DOI : 10.15207/jkcs.2018.9.12.047
- D. Lee, W. Yu & H. Lim. (2017). Bi-directional LSTM-CNN-CRF for Korean Named Entity Recognition System with Feature Augmentation. Journal of the Korea Convergence Society, 8(12), 55-62. DOI : 10.15207/JKCS.2017.8.12.055