DOI QR코드

DOI QR Code

Evaluation of the Shielding Effect of Polyvinyl Chloride (PVC) on Low-dose Blending Radiation Energy

폴리 염화 비닐(PVC)의 저선량 융합 방사선에너지에 대한 차폐 효과 평가

  • Kim, Seon-Chil (Department of Biomedical Engineering, Keimyung University) ;
  • Cho, Sung-Hyoun (Department of Physical Therapy, Nambu University)
  • 김선칠 (계명대학교 의용공학과) ;
  • 조성현 (남부대학교 물리치료학과)
  • Received : 2019.09.18
  • Accepted : 2019.12.20
  • Published : 2019.12.28

Abstract

PVC was chosen as a plastic product that can cope with lead, a radiation shielding material that is widely used in medical institutions. In addition to radiation shielding clothing, we want to evaluate whether it can be used as a medical device component and industrial shielding material in low dose areas. Commercial PVC has a density of 3.68 g/㎠ and can be positively expected sufficient shielding effect in certain radiation areas such as material flexibility and economy efficiency, and can be transformed into various forms and used as a lightweight shielding wall. The shielding performance was tested by adjusting the thickness of 5 sheets of 3mm PVC in the range of medical radiation used for clinical examination in medical institutions. Shielding performance against effective energy was evaluated based on tube radiation voltage of medical radiation. The thicker the PVC, the lower the tube voltage and the lower the effective energy, the greater the shielding effect. The shielding effect was 70% at 12mm thickness and 80kVp tube voltage. Therefore, the shielding effect of PVC material has a high dependence of thickness. In the future, continuous research is needed to make thin and light eco-friendly products while improving shielding performance.

의료기관에서 많이 사용되는 방사선 차폐 재료인 납을 대처할 수 있는 플라스틱 제품으로 PVC를 선택하였다. 방사선 차폐 의복 이외에 저선량 영역에서 의료기기 부품, 산업용 차폐 재료로 사용이 가능한지 평가하고자 한다. 상업용 PVC는 밀도가 3.68 g/㎠ 으로 재료의 유연성과 경제성 등 일정 방사선 영역에서는 충분한 차폐 효과를 긍정적으로 기대할 수 있으며, 다양한 형태로 변형이 가능하고, 경량의 차폐벽으로 사용할 수 있다. 의료기관에서 임상 검사 시 사용되는 의료방사선 영역 대에서 3mm PVC 5장을 두께로 조절하여 차폐 성능을 실험하였다. 의료방사선의 관전압 기준으로 실효에너지에 대한 차폐 성능을 평가하였다. PVC는 두께가 두꺼울수록 관전압과 실효에너지가 낮을수록 차폐효과는 크게 나타났으며, 차폐효과는 12mm 두께에 관전압 80kVp에서 70%의 차폐효과가 있었다. 따라서 PVC 재료의 차폐효과는 두께의 의존율이 높게 나타났다. 앞으로는 차폐 성능을 높이면서 얇고 가벼운 친환경 제품을 만들기 위한 지속적인 연구가 필요하다.

Keywords

References

  1. K. H. Choi & J. K. Cho. (2017). Analysis on working force supply of radiologic technologist in Korea. Journal of Digital Convergence, 15(7), 489-495. DOI : 10.14400/JDC.2017.15.7.489
  2. J. Y. Gu & J. G. Lee. (2018). Convergence and integration study related to development of digital contents for radiography training using dental radiograph and augmented reality. Journal of Digital Convergence, 16(12), 441-447. DOI : 10.14400/JDC.2018.16.12.441
  3. S. C. Kim, K. R. Dong & W. K. Chung. (2011). Performance evaluation of a medical radiation shielding sheet with barium as an environment-friendly material. Journal of the Korean Physical Society, 60(1), 165-170. DOI : 10.3938/jkps.60.165
  4. F. A. Jr. Mettler, P. W. Wiest, J. A. Locken & C. A. Kelsey. (2000). CT scanning: patterns of use and dose. Journal of Radiation Protection, 20(4), 353-359. DOI : 10.1088/0952-4746/20/4/301
  5. K. Yue, W. Luo, X. Dong, C. Wang, G. Wu, M. Jiang & Y. Zha. (2009). A new lead-free radiation shielding material for radiotherapy. Radiation Protection Dosimetry, 133(4), 256-260. DOI : 10.1093/rpd/ncp053
  6. S. C. Kim, S. Y. Seo, J. H. Yu, S. D. Lee, K. H. Kim & C. G. Kim. (2017). Development of radiation shield providing medical support for radioactive disaster in computer awareness analysis convergence-based. Cluster Computing, 21(1), 1109-1116. DOI : 10.1007/s10586-017-0750-6
  7. J. P. McCaffrey, F. Tessier & H. Shen. (2012). Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Medical Physics, 39(7), 4537-4546. DOI : 10.1118/1.4730504
  8. X. X. Li, H. S. Jeong & U. R. Cho. (2018). A Study on Property Change with Mixing Ratio in NBR/PVC Composites. Elastomers and Composites, 53(2), 48-51. DOI : 10.7473/EC.2018.53.2.48
  9. T. H. Kim & Y. C. Nho. (2001). Synthesis of PVA/PVP Hydrogel by Irradiation Crosslinking. Journal of Polymer Society of Korea, 25(2), 270-278.
  10. J. X. Li & C. M. Chan. (2001). Effect of the size of the dispersed NBR phase in PVC/NBR blends on the stability of PVC to electron irradiation. Polymer, 42(16), 6833-6839. DOI : 10.1016/S0032-3861(01)00179-3
  11. T. Nakagawa, H. B. Hopfenberg & V. Stannett. (1971). Radiation protection of poly(vinyl chloride) by N methyl dithiocarbamate substitution. Journal of Applied Polymer Science, 15(3), 747-758. DOI : 10.1002/app.1971.070150319
  12. K. W. Kim, S. H. Choi, K. Y. Kim, I. P. Lee, S. G. Hwang & K. R. Dong. (2017). Performance Evaluation of Aprons according to Lead Equivalent and Form Types. Journal of Radiation Industry, 10(4), 219-225.
  13. FAO, IAEA, ILO, OECD/NEA, PAHO & WHO. (1996). International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources. International Atomic Energy Agency, Vienna : Austria.
  14. Y. Liu, B. D. Sowerby & J. R. Tickner. (2008). Comparison of neutron and high-energy x-ray dual-beam radiography for air cargo inspection. Applied Radiation and Isotopes, 66(4), 463-473. DOI : 10.1016/j.apradiso.2007.10.005
  15. S. J. Yoo, C. S. Lim & K. R. Sim. (2015). A study on performance evaluation of Apron by shielding rate and uniformity. Journal of Korea Safety Management, 17(1), 103-109. DOI : 10.12812/ksms.2015.17.1.103
  16. Y. S. You, K. H. So & M. S. Chung. (2008). Trends in Development and Marketing of Degradable Plastics. Korean Journal of Food Science and Technology, 40(4), 365-374.
  17. J. P. McCaffrey, H. Shen, B. Downton & E. Mainegra-Hing. (2007). Radiation attenuation by lead and nonlead materials used in radiation shielding garments. The International Journal of Medical Physics Research and Practice, 34(2), 530-537. DOI: 10.1118/1.2426404