DOI QR코드

DOI QR Code

Transient Rheological Behavior of Natural Polysaccharide Concentrated Xanthan Gum Solutions in Start-up Shear Flow Fields : Prediction of a Stress Overshoot Phenomenon Using the Wagner Constitutive Equation

급개시 전단유동장에서 천연 다당류 잔탄검 농후용액의 과도적 레올러지 거동 : Wagner 구성방정식을 사용한 응력도약현상 예측

  • Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Choi, Geun-Seok (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Yong-Seok (Certification Industry Promotion Division, Korea Agency for Technology and Standards) ;
  • Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
  • 안혜진 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 최근석 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 김용석 (국가기술표준원 인증산업진흥과) ;
  • 송기원 (부산대학교 공과대학 유기소재시스템공학과)
  • Received : 2019.11.15
  • Accepted : 2019.12.10
  • Published : 2019.12.28

Abstract

The present study has been designed to theoretically predict the transient rheological behavior of concentrated xanthan gum systems in start-up shear flow fields using the Wagner constitutive equation. Using an Advanced Rheometric Expansion System (ARES), a number of constant shear rates were suddenly imposed to aqueous xanthan gum solutions with different concentrations and then the resultant shear stress responses were detected with time. The linear and nonlinear stress relaxation moduli at various deformation magnitudes were also measured to determine the damping function. The linear relaxation modulus was characterized by a power-law expression to determine the memory function and a time-strain separability of the nonlinear relaxation moduli was employed to predict the nonlinear response. The experimentally obtained damping function was compared with the fitted results calculated from the two mathematical forms of the Wagner and Soskey-Winter equations in order to examine the effect of damping function on the predictive performance of the Wagner model. The overall applicability of the Wagner model for predicting the whole procedures of a transient rheological behavior at start-up of steady shear flow was discussed in depth. The main findings obtained from this study are summarized as follows : (1) The Wagner model has a predictive ability to qualitatively express the whole procedures of a transient rheological behavior of concentrated xanthan gum solutions for all shear rates imposed, regardless of selecting a damping function. (2) The values of the maximum reduced stress predicted by the Wagner model employing the Wagner damping function exhibit an almost equal magnitude, irrespective of the shear rates imposed, whereas those predicted by the Wagner model employing the Soskey-Winter damping function are gradually decreased with an increase in imposed shear rate. (3) For all shear rates applied, the Wagner model having the Wagner damping function has a fairly good ability to predict the time at which the maximum stress occurs, tmax, while the Wagner model having the Soskey-Winter damping function predicts a much faster value of tmax. (4) The Wagner model using both of the Wagner and Soskey-Winter damping functions has a weakness with respect to predicting a stress decay which always show a slower decrement than does the predicted results by the Wagner model using the two different forms of a damping function. (5) The Wagner model adopting the Wagner damping function exhibits a superior performance to the Wagner model adopting the Soskey-Winter damping function for predicting the whole steps of a transient rheological behavior.

Keywords

References

  1. J. D. Ferry, "Viscoelastic Properties of Polymer", 3rd ed., John Wiley & Sons, 1980.
  2. N. W. Tschoegl, "The Phenomenological Theory of Linear Viscoelastic Behavior", Springer-Verlag, Berlin, 1989.
  3. J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990.
  4. R. I. Tanner, "Engineering Rheology", 2nd ed., Oxford University Press, New York, 2000.
  5. P. J. Carreau, D. C. R. De Kee, and R. P. Chhabra, "Rheology of Polymeric Systems : Principles and Applications", Carl Hanser Verlag, Munich, 1997.
  6. M. T. Islam and L. A. Archer, "Nonlinear Rheology of Highly Entangled Polymer Solutions in Start-Up and Steady Shear Flow", J. Polym. Sci., Part B : Polym. Phys., 2001, 39, 2275-2289. https://doi.org/10.1002/polb.1201
  7. A. K. Tezel, J. P. Oberhauser, R. S. Graham, K. Jagannathan, T. C. B. McLeish, and L. G. Leal, "The Nonlinear Response of Entangled Star Polymers to Start-Up of Shear Flow", J. Rheol., 2009, 53, 1193-1241. https://doi.org/10.1122/1.3160733
  8. S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. https://doi.org/10.1122/1.3662962
  9. A. Kaye, "Non-Newtonian Flow in Incompressible Fluids", Note No. 134, College of Aeronautics, Cranford, UK, 1962.
  10. B. Bernstein, E. A. Kearsley, and L. J. Zapas, "A Study of Stress Relaxation with Finite Strain", Trans. Soc. Rheol., 1963, 7, 391-410. https://doi.org/10.1122/1.548963
  11. M. H. Wagner, “Analysis of Time-Dependent Nonlinear Stress Growth Data for Shear and Elongational Flow of a Low- Density Branched Polyethylene Melt”, Rheol. Acta, 1976, 15, 136-142. https://doi.org/10.1007/BF01517505
  12. A. S. Lodge, "Elastic Liquids", Academic Press, New York, 1964.
  13. A. J. Giacomin, R. S. Jeyaseelan, T. Samurkas, and J. M. Dealy, "Validity of Separable BKZ Model for Large Amplitude Oscillatory Shear", J. Rheol., 1993, 37, 811-826. https://doi.org/10.1122/1.550396
  14. M. J. Reimers and J. M. Dealy, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions: Large Amplitude Oscillatory Shear of a Very High Molecular Weight Polymer in Diethyl Phthalate", J. Rheol., 1996, 40, 167-186. https://doi.org/10.1122/1.550738
  15. C. Gallegos, M. Berjano, A. Guerrero, J. Munoz, and V. Flores, "Transient Flow of Mayonnaise Described by A Nonlinear Viscoelasticity Model", J. Texture Stud., 1992, 23, 153-168. https://doi.org/10.1111/j.1745-4603.1992.tb00517.x
  16. C. Valencia, M. C. Sanchez, A. Ciruelos, A. Latorre, J. M. Madiedo, and C. Gallegos, "Nonlinear Viscoelasticity Modeling of Tomato Paste Products", Food Res. Int., 2003, 36, 911-919. https://doi.org/10.1016/S0963-9969(03)00100-5
  17. P. Partal, A. Guerrero, M. Berjano, and C. Gallegos, "Transient Flow of O/W Sucrose Palmitate Emulsions", J. Food Eng., 1999, 41, 33-41. https://doi.org/10.1016/S0260-8774(99)00071-0
  18. C. Bengoechea, M. C. Puppo, A. Romero, F. Cordobes, and A. Guerrero, "Linear and Nonlinear Viscoelasticity of Emulsions Containing Carob Protein as Emulsifier", J. Food Eng., 2008, 87, 124-135. https://doi.org/10.1016/j.jfoodeng.2007.11.024
  19. C. J. Carriere, A. J. Thomas, and G. E. Inglett, "Prediction of the Nonlinear Transient and Oscillatory Rheological Behavior of Flour Suspensions Using a Strain-Separable Integral Constitutive Equation", Carbohydrate Polym., 2002, 47, 219-231. https://doi.org/10.1016/S0144-8617(01)00165-5
  20. M. R. Mackley, R. T. J. Marshall, J. B. A. F. Smeulders, and F. D. Zhao, "The Rheological Characterization of Polymeric and Colloidal Fluids", Chem. Eng. Sci., 1994, 49, 2551-2565. https://doi.org/10.1016/0009-2509(94)E0082-2
  21. J. M. Madiedo, J. M. Franco, C. Valencia, and C. Gallegos, "Modeling of the Nonlinear Rheological Behavior of a Lubricating Greese at Low Shear Rates", J. Tribol. (Trans. ASME), 2000, 122, 590-596. https://doi.org/10.1115/1.555406
  22. E. Behzadfar and S. G. Hatzikiriakos, “Viscoelastic Properties and Constitutive Modeling of Bitumen”, Fuel, 2013, 108, 391-399. https://doi.org/10.1016/j.fuel.2012.12.035
  23. J. Ren and R. Krishnamoorti, “Nonlinear Viscoelastic Properties of Layered-Silicate-Based Intercalated Nanocomposites”, Macromolecules, 2003, 36, 4443-4451. https://doi.org/10.1021/ma020412n
  24. S. H. Lee and J. R. Youn, "Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites", Adv. Comp. Mat., 2008, 17, 191-214. https://doi.org/10.1163/156855108X345225
  25. F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, "Xanthan Gum : Production Recovery, and Properties", Biotechnol. Adv., 2000, 18, 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
  26. E. Pelletier, C. Viebke, J. Meadows, and P. A. Williams, “A Rheological Study of the Order-Disorder Conformational Transition of Xanthan Gum”, Biopolymers, 2001, 59, 339-346. https://doi.org/10.1002/1097-0282(20011015)59:5<339::AID-BIP1031>3.0.CO;2-A
  27. M. Marcotte, A. R. Taherian-Hoshahili, and H. S. Ramaswamy, "Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature", Food Res. Int., 2001, 34, 695-703. https://doi.org/10.1016/S0963-9969(01)00091-6
  28. J. Ahmed and H. S. Ramaswamy, “Effect of High-Hydrostatic Pressure and Concentration on Rheological Characteristics of Xanthan Gum”, Food Hydrocolloids, 2004, 18, 367-373. https://doi.org/10.1016/S0268-005X(03)00123-1
  29. H. Schott in "Remington's Pharmaceutical Sciences-Colloidal Dispersions", A. R. Gennaro and G. D. Chase Eds., Mack, Philadelphia, 1985, pp.286-289.
  30. K. S. Kang and D. J. Pettit in "Industrial Gums", R. L. Whistler and J. N. Be Miller Eds., 3rd ed., Academic Press, New York, 1993, pp.341-398.
  31. A. Palaniraj and V. Jayaraman, "Production, Recovery and Applications of Xanthan Gum by Xanthomonas Campestris", J. Food. Eng., 2011, 106, 1-12. https://doi.org/10.1016/j.jfoodeng.2011.03.035
  32. H. Y. Jang, K. Zhang, B. H. Chon, and H. J. Choi, "Enhanced Oil Recovery Performance and Viscosity Characteristics of Polysaccharide Xanthan Gum Solution", J. Ind. Eng. Chem., 2015, 21, 741-745. https://doi.org/10.1016/j.jiec.2014.04.005
  33. J. Huang, B. Yan, A. Faghihnejad, H. Xu, and H. Zeng, "Understanding Nanorheology and Surface Forces of Confined Thin Films", Korea-Aust. Rheol. J., 2014, 26, 3-14. https://doi.org/10.1007/s13367-014-0002-8
  34. P. J. Whitcomb and C. W. Macosko, "Rheology of Xanthan Gum", J. Rheol., 1978, 22, 493-505. https://doi.org/10.1122/1.549485
  35. W. E. Rochefort and S. Middleman, "Rheology of Xanthan Gum : Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments", J. Rheol., 1987, 31, 337-369. https://doi.org/10.1122/1.549953
  36. K. C. Tam and C. Tiu, "Steady and Dynamic Shear Properties of Aqueous Polymer Solutions", J. Rheol., 1989, 33, 257-280. https://doi.org/10.1122/1.550015
  37. M. Milas, M. Rinaudo, M. Knipper, and J. L. Schuppiser, “Flow and Viscoelastic Properties of Xanthan Gum Solutions”, Macromolecules, 1990, 23, 2506-2511. https://doi.org/10.1021/ma00211a018
  38. A. B. Rodd, J. J. Cooper-White, D. E. Dunstan, and D. V. Boger, “Gel Point Studies for Chemically-Modified Biopolymer Networks Using Small Amplitude Oscillatory Rheometry”, Polymer, 2001, 42, 185-198. https://doi.org/10.1016/S0032-3861(00)00311-6
  39. N. B. Wyatt and M. W. Liberatore, "Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum", J. Appl. Polym. Sci., 2009, 114, 4076-4084. https://doi.org/10.1002/app.31093
  40. E. Choppe, F. Puaud, T. Nicolai, and L. Benyahia, "Rheology of Xanthan Solutions as a Function of Temperature, Concentration and Ionic Strength", Carbohydrate Polymers, 2010, 82, 1228-1235. https://doi.org/10.1016/j.carbpol.2010.06.056
  41. L. Xu, G. Xu, T. Liu, Y. Chen, and H. Gong, “The Comparison of Rheological Properties of Aqueous Welan Gum and Xanthan Gum Solutions”, Carbohydrate Polymers, 2013, 92, 516-522. https://doi.org/10.1016/j.carbpol.2012.09.082
  42. A. Giboreau, G. Cuvelier, and B. Launay, "Rheological Behavior of Three Biopolymer/Water Systems with Emphasis on Yield Stress and Viscoelastic Properties", J. Texture Stud., 1994, 25, 119-137. https://doi.org/10.1111/j.1745-4603.1994.tb01321.x
  43. R. Pal, "Oscillatory, Creep and Steady Flow Behavior of Xanthan-Thickened Oil-in-Water Emulsions", AIChE J., 1995, 41, 783-794. https://doi.org/10.1002/aic.690410405
  44. L. Ma and G. V. Barbosa-Canovas, "Viscoelastic Properties of Xanthan Gels Interacting with Cations", J. Food Sci., 1997, 62, 1124-1128. https://doi.org/10.1111/j.1365-2621.1997.tb12227.x
  45. R. K. Richardson and S. B. Ross-Murphy, "Nonlinear Viscoelasticity of Polysaccharide Solutions. 2 : Xanthan Polysaccharide Solutions", Int. J. Biol. Macromol., 1987, 9, 257-264. https://doi.org/10.1016/0141-8130(87)90063-8
  46. J. A. Carmona, P. Ramirez, N. Calero, and J. Munoz, "Large Amplitude Oscillatory Shear of Xanthan Gum Solutions : Effect of Sodium Chloride (NaCl) Concentration", J. Food Eng., 2014, 126, 165-172. https://doi.org/10.1016/j.jfoodeng.2013.11.009
  47. T. Lim, J. T. Uhl, and R. K. Prudhomme, "Rheology of Self- Associating Concentrated Xanthan Solutions", J. Rheol., 1984, 28, 367-379. https://doi.org/10.1122/1.549757
  48. M. M. Santore and R. K. Prudhomme, "Rheology of a Xanthan Broth at Low Stresses and Strains", Carbohydr. Polym., 1990, 12, 329-379. https://doi.org/10.1016/0144-8617(90)90074-3
  49. K. W. Song, Y. S. Kim, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior", Fiber. Polym., 2006, 7, 129-138. https://doi.org/10.1007/BF02908257
  50. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81.
  51. S. B. Ross-Murphy and K. P. Shatwell, “Polysaccharide Strong and Weak Gels”, Biorheology, 1993, 30, 217-227. https://doi.org/10.3233/BIR-1993-303-407
  52. S. B. Ross-Murphy, "Structure-Property Relationships in Food Biopolymer Gels and Solutions", J. Rheol., 1995, 39, 1451-1463. https://doi.org/10.1122/1.550610
  53. J. S. Lee, Y. S. Kim, and K. W. Song, "Transient Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Start-Up Shear Flow Fields : An Experimental Study Using a Strain-Controlled Rheometer", Korea-Aust. Rheol. J., 2015, 27, 227-239. https://doi.org/10.1007/s13367-015-0023-y
  54. R. B. Bird, R. C. Armstrong, and O. Hassager, "Dynamics of Polymeric Liquids, Vol. 1 : Fluid Mechanics", 2nd ed., John Wiley & Sons, New York, 1987.
  55. R. G. Larson, “Constitutive Relationships for Polymeric Materials with Power-Law Distributions of Relaxation Times”, Rheol. Acta, 1985, 24, 327-334. https://doi.org/10.1007/BF01333961
  56. P. R. Soskey and H. H. Winter, "Large Step Shear Strain Experiments with Parallel-Disk Rotational Rheometers", J. Rheol., 1984, 28, 625-645. https://doi.org/10.1122/1.549770
  57. I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products", Academic Press, New York, 1980.
  58. J. W. Bae, J. S. Lee, and K. W. Song, "Stress Growth Behavior of Aqueous Poly(Ethylene Oxide) Solutions at Start-up of Steady Shear Flow", Text. Sci. Eng., 2013, 50, 292-307. https://doi.org/10.12772/TSE.2013.50.292
  59. J. S. Lee and K. W. Song, "Time-Dependent Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Interrupted Shear and Step-Incremental/Reductional Shear Flow Fields", 2015, 27, 297-307. https://doi.org/10.1007/s13367-015-0029-5
  60. R. Lapasin and S. Pricl, "Rheology of Industrial Polysaccharides : Theory and Applications", Aspen Publishers, Gaithersburg, MD, 1999.
  61. B. T. Stokke, B. E. Christensen, and O. Smidsrod in "Polysaccharides : Structural Diversity and Functional Versatility- Macromolecular Properties of Xanthan", S. Dumitriu Ed., Marcel Dekker, New York, 1998, pp.433-472.
  62. B. Katzbauer, "Properties and Applications of Xanthan Gum", Polym. Degrad. Stability., 1998, 59, 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8
  63. G. Holzwarth and E. B. Prestridege, “Multistranded Helix in Xanthan Polysaccharide”, Science, 1977, 197, 757-759. https://doi.org/10.1126/science.887918
  64. T. A. Camesano and K. J. Wilkinson, “Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy”, Biomacromolecules, 2001, 2, 1184-1191. https://doi.org/10.1021/bm015555g
  65. K. Ogawa and T. Yui in "Polysaccharides : Structural Diversity and Functional Versatility-X-Ray Diffraction Study of Polysaccharides", S. Dumitriu Ed., Marcel Dekker, New York, 1998, pp.101-130.
  66. K. Born, V. Langendorff, and P. Boulenguer, "Biopolymers", Vol. 5, Wiley-Interscience, New York, 2001.
  67. M. A. Zirnsak, D. V. Boger, and V. Tirtaatmadja, "Steady Shear and Dynamic Rheological Properties of Xanthan Gum Solutions in Viscous Solvents", J. Rheol., 1999, 43, 627-650. https://doi.org/10.1122/1.551007
  68. M. S. Chun, C. Kim, and D. E. Lee, "Conformation and Translational Diffusion of a Xanthan Polyelectrolyte Chain : Brownian Dynamics Simulation and Single Molecule Tracking", Phys. Rev. E., 2009, 79, 051919. https://doi.org/10.1103/PhysRevE.79.051919
  69. M. S. Chun and M. J. Ko, "Rheological Correlations of Relaxation Time for Finite Concentrated Semiflexible Polyelectrolytes in Solvents", J. Kor. Phys. Soc., 2012, 61, 1108-1113. https://doi.org/10.3938/jkps.61.1108
  70. M. S. Chun and O. O. Park, "On the Intrinsic Viscosity of Anionic and Nonionic Rodlike Polysaccharide Solutions", Macromol. Chem. Phys., 1994, 195, 701-711. https://doi.org/10.1002/macp.1994.021950227
  71. G. S. Chang, J. S. Koo, and K. W. Song, "Wall Slip of Vaseline in Steady Shear Rheometry", Korea-Aust. Rheol. J., 2003, 15, 55-61.
  72. J. Y. Lee, H. W. Jung, and J. C. Hyun, "Rotational Relaxation Time of Polyelectrolyte Xanthan Chain via Single Molecule Tracking Method", Korea-Aust. Rheol. J., 2012, 24, 333-337. https://doi.org/10.1007/s13367-012-0040-z
  73. K. W. Song, S. H. Ye, and G. S. Chang, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (IV): Nonlinear Stress Relaxation in Single-Step Large Shear Deformations", J. Kor. Fiber Soc., 1999, 36, 383-395.
  74. H. J. Ahn, G. S. Chang, and K. W. Song, "A Time-Strain Separable K-BKZ Constitutive Equation to Describe the Large Amplitude Oscillatory Shear(LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2017, 54, 230-245. https://doi.org/10.12772/tse.2017.54.230
  75. Y. Kwon and K. S. Cho, "Time-Strain Nonseparability in Viscoelastic Constitutive Equations", J. Rheol., 2001, 45, 1441-1452. https://doi.org/10.1122/1.1413505
  76. L. J. Zapas, "Viscoelastic Behavior under Large Deformations", J. Res. NBS, 1966, 70A, 525-532. https://doi.org/10.6028/jres.070A.044
  77. A. C. Papanastasiou, L. E. Scriven, and C. W. Macosko, An Integral Constitutive Equation for Mixed Flows: Viscoelastic Characterization", J. Rheol., 1983, 27, 38-410.
  78. K. Osaki, “On the Damping Function of Shear Relaxation Modulus for Entangled Polymers”, Rheol. Acta, 1993, 32, 429-437. https://doi.org/10.1007/BF00396173
  79. K. Osaki, "Constitutive Equation and Damping Function for Entangled Polymers", Korea-Aust. Rheol. J., 1999, 11, 287-291.
  80. V. H. Rolon-Garrido and M. H. Wagner, “The Damping Function in Rheology”, Rheol. Acta, 2009, 48, 245-284. https://doi.org/10.1007/s00397-008-0308-x
  81. F. A. Morrison and R. G. Larson, "A Study of Shear Stress Relaxatopm Anomalies in Binary of Monodisperse Polystyrenes", J. Polym. Sci. B: Polym. Phys., 1992, 30, 943-950. https://doi.org/10.1002/polb.1992.090300902
  82. M. Doi and S. F. Edwards, "The Theory of Polymer Dynamics", Oxford University Press, New York, 1986.
  83. S. Q. Wang, S. Ravindranath, Y. Wang, and P. Boukany, "New Theoretical Considerations in Polymer Rheology : Elastic Breakdown of Chain Entanglement Network", J. Chem. Phys., 2007, 127, 064903. https://doi.org/10.1063/1.2753156
  84. Y. Wang and S. Q. Wang, "Exploring Stress Overshoot Phenomenon upon Startup Deformation of Entangled Linear Polymeric Liquid", J. Rheol., 2009, 53, 1389-1401. https://doi.org/10.1122/1.3208063
  85. K. Osaki, T. Inoue, and T. Isomura, "Stress Overshoot of Polymer Solutions at High Rates of Shear", J. Polym. Sci., Part B : Polym. Phys., 2000, 38, 1917-1925. https://doi.org/10.1002/1099-0488(20000715)38:14<1917::AID-POLB100>3.0.CO;2-6
  86. P. E. Boukany, S. Q. Wang, and X. Wang, "Universal Scaling Behavior in Startup Shear of Entangled Linear Polymer Melts", J. Rheol., 2009, 53, 617-629. https://doi.org/10.1122/1.3086872
  87. K. W. Song, J. W. Bae, G. S. Chang, D. H. Noh, Y. H. Park, and C. H. Lee "Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 295-307.
  88. K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (II): Comparison of Steady Flow Viscosity with Dynamic and Complex Viscosities", J. Kor. Fiber Soc., 1998, 35, 480-489.
  89. F. J. Stadler and C. Bailly, “A New Method for the Calculation of Continuous Relaxation Spectra from Dynamic-Mechanical Data”, Rheol. Acta, 2009, 48, 33-49. https://doi.org/10.1007/s00397-008-0303-2
  90. I. Mc Dougall, N. Orbey, and J. M. Dealy, "Inferring Meaningful Relaxation Spectra from Experimental Data", J. Rheol., 2014, 58, 779-797. https://doi.org/10.1122/1.4870967
  91. P. Partal, A. Guerrero, M. Berjano, and C. Gallegos, "Transient Flow of O/W Sucrose Palmitate Emulsions", J. Food. Eng., 1999, 41, 33-41. https://doi.org/10.1016/S0260-8774(99)00071-0