DOI QR코드

DOI QR Code

Filtration Properties of Multi-Layered Structures of High-Performance Air Filter Media Manufactured via Electrospinning

전기방사를 통해 제조된 고성능 에어필터여재의 다중층 구조에 따른 여과 특성

  • Received : 2019.10.29
  • Accepted : 2019.12.05
  • Published : 2019.12.28

Abstract

A high-performance air filter media, with a width of 1 m, was manufactured using an electrospinning system. The filter media materials utilized polyethylene terephthalate (PET) as a support layer, polyethersulfone (PES) as a polymer, dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) as a solvent, and cetyl trimethyl ammonium bromide (CTAB) as a surfactant. The experimental variables for the electrospinning process included the polymer concentration and laminated structure (i.e., single-layer, multi-layer). The physicochemical properties of the manufactured nanofiber filter media were obtained using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and the universal testing machine (UTM). The filter media performance was verified using a filter tester (TSI 3160, NaCl aerosol 0.3 um @32 l/min) and capillary flow porometer (CFP). In the case of a single-layer configuration, the filtration efficiency increased as the pore size decreased. However, the differential pressure increased simultaneously. Furthermore, the presence of beads and unformed fibers was determined using scanning electron microscope (SEM) images when the polymer concentration dropped below a certain level (20 wt%). However, the addition of CTAB enabled electrospinning in low-concentration polymer solutions. In the case of a multi-layered configuration, the pore size uniformity was increased by the multi-layer configuration of nanofibers of different diameters, which significantly improved the filter performance (quality factor: 0.20 - single-layer, 0.85 - multi-layer).

Keywords

References

  1. J. Zeleny, "The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces", Physical Review, 1914, 3, 69-91. https://doi.org/10.1103/PhysRev.3.69
  2. A. Formhals, "Process and Apparatus for Preparing Artificial Threads", US Patent, 1,975,504 (1934).
  3. A. Formhals, "Method and Apparatus for Spinning", US Patent, 2,349,950 (1944).
  4. N. Tucker, J. J. Stanger, M. P. Staiger, H. Razzaq, and K. Hofman, "The History of the Science and Technology of Electrospinning from 1600 to 1995", J. Eng. Fiber. Fabr., 2012, 7, 63-73.
  5. L. Larrondo and R. St. J. Manley, "Electrostatic Fiber Spinning from Polymer Melts. I. Experimental Observations on Fiber Formation and Properties", J. Polym. Sci. B, Polym. Phys., 1981, 19, 909-920. https://doi.org/10.1002/pol.1981.180190601
  6. J. Doshi and D. H. Reneker, "Electrospinning Process and Applications of Electrospun Fibers", J. Electrostat., 1995, 35, 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
  7. S. Zhang, H. Liu, J. Yu, and B. Ding, “Anti-deformed Polyacrylonitrile/polysulfone Composite Membrane with Binary Structures for Effective Air Filtration”, ACS Appl. Mater. Interfaces, 2016, 8, 8086-8095. https://doi.org/10.1021/acsami.6b00359
  8. S. Zhang, H. Liu, F. Zuo, X. Yin, J. Yu, and B. Ding, “A Controlled Design of Ripple‐Like Polyamide‐6 Nanofiber/Nets Membrane for High‐Efficiency Air Filter”, Small, 2017, 13, 1603151. https://doi.org/10.1002/smll.201603151
  9. J. Xu, C. Liu, P. C. Hsu, R. Zhang, Y. Liu, and Y. Cui, "Roll-toroll Transfer of Electrospun Nanofiber Film for Highefficiency Transparent Air Filter", Nano Lett., 2016, 16, 1270-1275. https://doi.org/10.1021/acs.nanolett.5b04596
  10. X. Li, C. Wang, X. Huang, T. Zhang, X. Wang, M. Min, L. Wang, H. Huang, and B. S. Hsiao, “Anionic Surfactant- Triggered Steiner Geometrical Poly(vinylidene fluoride) Nanofiber/Nanonet Air Filter for Efficient Particulate Matter Removal”, ACS Appl. Mater. Interfaces, 2018, 10, 42891-42904. https://doi.org/10.1021/acsami.8b16564
  11. A. A. Kirsh, I. B. Stechkian, and N. A. Fuchs, "Efficiency of Aerosol Filters Made of Ultrafine Polydisperse Fibres", J. Aerosol. Sci., 1975, 6, 119-124. https://doi.org/10.1016/0021-8502(75)90004-X
  12. Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, and J. K. Lee, "Development of High Efficiency Nanofilters Made of Nanofibers", Curr. Appl. Phys., 2006, 6, 1030-1035. https://doi.org/10.1016/j.cap.2005.07.013
  13. H. J. Choi, M. Kumita, T. Seto, Y. Inui, L. Bao, T. Fujimoto, and Y. Otani, "Effect of Slip Flow on Pressure Drop of Nanofiber Filters", J. Aerosol. Sci., 2017, 114, 244-249. https://doi.org/10.1016/j.jaerosci.2017.09.020
  14. W. W. F. Leung, C. H. Hung, and P. T. Yuen, "Effect of Face Velocity, Nanofiber Packing Density and Thickness on Filtration Performance of Filters with Nanofibers Coated on a Substrate", Sep. Purif. Technol., 2010, 71, 30-37. https://doi.org/10.1016/j.seppur.2009.10.017
  15. T. Lin, H. Wang, H. Wang, and X. Wang, "Effects of Polymer Concentration and Cationic Surfactant on the Morphology of Electrospun Polyacrylonitrile Nanofibres", J. Mater. Sci. Technol., 2005, 21, 1-4. https://doi.org/10.3321/j.issn:1005-0302.2005.01.001
  16. Y. Aykut, B. Pourdeyhimi, and S. A. Khan, "Effects of Surfactants on the Microstructures of Electrospun Polyacrylonitrile Nanofibers and Their Carbonized Analogs", J. Appl. Polym. Sci., 2013, 130, 3726-3735. https://doi.org/10.1002/app.39637
  17. K. Lin, K. N. Chua, G. T. Christopherson, S. Lim, and H. Q. Mao, “Reducing Electrospun Nanofiber Diameter and Variability Using Cationic Amphiphiles”, Polymer, 2007, 48, 6384-6394. https://doi.org/10.1016/j.polymer.2007.08.056
  18. C. Kriegel, K. M. Kit, D. J. McClements, and J. Weiss, "Electrospinning of Chitosan-poly(ethylene oxide) Blend Nanofibers in the Presence of Micellar Surfactant Solutions", Polymer, 2009, 50, 189-200. https://doi.org/10.1016/j.polymer.2008.09.041
  19. C. Liu, P. C. Hsu, H. W. Lee, M. Ye, G. Zheng, N. Liu, and Y. Cui, "Transparent Air Filter For High-efficiency PM2.5 Capture", Nat. Commun., 2015, 6, 6205. https://doi.org/10.1038/ncomms7205
  20. S. Lee, A. R. Cho, D. Park, J. K. Kim, K. S. Han, I. J. Yoon, and J. Nah, “Reusable Polybenzimidazole Nanofiber Membrane Filter for Highly Breathable PM2.5 Dust Proof Mask”, ACS Appl. Mater. Interfaces, 2019, 11, 2750-2757. https://doi.org/10.1021/acsami.8b19741
  21. X. Zhao, S. Wang, X. Yin, J. Yu, and B. Ding, "Slip-Effect Functional Air Filter for Efficient Purification of PM2.5", Sci. Rep., 2016, 17, 35472.