DOI QR코드

DOI QR Code

Effect of Drawing Ratio on the Properties of UHMWPE Fibers for HDPE Contents

HDPE 함량에 따른 UHMWPE 섬유의 물성에 미치는 연신비의 영향

  • 심진태 (전북대학교 탄소소재파이버공학과) ;
  • 강영식 ((주)디쏠) ;
  • 김현석 ((주)디쏠) ;
  • 정재훈 (전북대학교 탄소소재파이버공학과) ;
  • 정용식 (전북대학교 탄소소재파이버공학과)
  • Received : 2019.10.04
  • Accepted : 2019.10.18
  • Published : 2019.12.28

Abstract

The thermal conductivity of highly oriented ultra-high-molecular-weight polyethylenes (UHMWPEs), such as fiber and film, are known to increase as the drawing ratio increases in the direction of the orientation axis. UHMWPE fibers were prepared by gel spinning and dry heat stretching methods. To increase the drawing ratio, a certain amount of high-density polyethylene (HDPE) was added to the dope. The addition of HDPE enhanced the drawing ratio, and the resultant tensile strength and modulus of the UHMWPE fibers also increased. The HDPE-added fibers showed a lower degree of crystallinity but a higher drawing ratio compared to those of the neat UHMWPE fibers. Therefore, HDPE was an effective additive for producing highly drawn UHMWPE fibers as potential fibrous heat-release materials.

Keywords

References

  1. P. Barham and A. Keller, "High-strength Polyethylene Fibers from Solution and Gel Spinning", J. Mater. Sci., 1985, 20, 2281-2302. https://doi.org/10.1007/BF00556059
  2. X. Shi, Y. Bin, D. Hou, Y. Men, and M. Matsuo, "Gelation/ Crystallization Mechanisms of UHMWPE Solutions and Structures of Ultradrawn Gel Films", Polym. J., 2014, 46, 21-35. https://doi.org/10.1038/pj.2013.66
  3. K. Paso, M. Senra, Y. Yi, A. Sastry, and H. S. Fogler, "Paraffin Polydispersity Facilitates Mechanical Gelation", Ind. Eng. Chem. Res., 2005, 44, 7242-7254. https://doi.org/10.1021/ie050325u
  4. P. Smith and P. J. Lemstra, "Ultrahigh‐strength Polyethylene Filaments by Solution Spinning/drawing, 2. Influence of Solvent on the Drawability", Macromol. Chem. Phys., 1979, 180, 2983-2986. https://doi.org/10.1002/macp.1979.021801220
  5. P. Smith, P. J. Lemstra, and H. C. Booij, "Ultradrawing of High‐molecular‐weight Polyethylene Cast from Solution. II. Influence of Initial Polymer Concentration", J. Polym. Sci.: Polym. Phys. Ed., 1981, 19, 877-888. https://doi.org/10.1002/pol.1981.180190514
  6. P. Smith and P. J. Lemstra, "Tensile Strength of Highly Oriented Polyethylene", J. Polym. Sci.: Polym. Phys. Ed., 1981, 19, 1007-1009. https://doi.org/10.1002/pol.1981.180190610
  7. A. Pennings, R. Van der Hooft, A. Postema, W. Hoogsteen, and G. Ten Brinke, "High-speed Gel-spinning of Ultra-high Molecular Weight Polyethylene", Polym. Bull., 1986, 16, 167-174. https://doi.org/10.1007/BF00955487
  8. T. Jian, W. D. Shyu, Y. T. Lin, K. N. Chen, and J. T. Yeh, "Spinning and Drawing Properties of Ultrahigh‐molecularweight Polyethylene Fibers Prepared at Varying Concentrations and Temperatures", Polym. Eng. Sci., 2003, 43, 1765-1777. https://doi.org/10.1002/pen.10149
  9. J. T. Yeh and H. C. Wu, "Ultradrawing Gel Films of Blends of Ultrahigh-molecular-weight Polyethylene and Low-molecularweight Polyethylenes with Varying Short-chain Branched Lengths", Polym. J., 1998, 30, 1-10. https://doi.org/10.1295/polymj.30.1
  10. Z. Wang, M. An, H. Xu, Y. Lv, F. Tian, and Q. Gu, “Structural Evolution from Shish-kebab to Fibrillar Crystals During Hotstretching Process of Gel Spinning Ultra-high Molecular Weight Polyethylene Fibers Obtained from Low Concentration Solution”, Polymer, 2017, 120, 244-254. https://doi.org/10.1016/j.polymer.2017.05.062
  11. J. K. Keum, F. Zuo, and B. S. Hsiao, “Formation and Stability of Shear-induced Shish-kebab Structure in Highly Entangled Melts of UHMWPE/HDPE Blends”, Macromolecules, 2008, 41, 4766-4776. https://doi.org/10.1021/ma800063e
  12. J. Smook and A. J. Pennings, "Elastic Flow Instabilities and Shish-kebab Formation during Gel-spinning of Ultra-high Molecular Weight Polyethylene", J. Mater. Sci., 1984, 19, 31-43. https://doi.org/10.1007/BF02403108
  13. Y. Fukushima, Y. Ohta, and H. Murase, "High-performance and Specialty Fibers", Springer Japan Ltd., 2016.
  14. R. H. Somani, L. Yang, L. Zhu, and B. S. Hsiao, “Flow-induced Shish-kebab Precursor Structures in Entangled Polymer Melts”, Polymer, 2005, 46, 8587-8623. https://doi.org/10.1016/j.polymer.2005.06.034
  15. S. Ronca, T. Igarashi, G. Forte, and S. Rastogi, “Metallic-like Thermal Conductivity in a Lightweight Insulator: Solid-state Processed Ultra High Molecular Weight Polyethylene Tapes and Films”, Polymer, 2017, 123, 203-210. https://doi.org/10.1016/j.polymer.2017.07.027
  16. F. Wang, L. Liu, P. Xue, and M. Jia, “Crystal Structure Evolution of UHMWPE/HDPE Blend Fibers Prepared by Melt Spinning”, Polymers, 2017, 9, 96. https://doi.org/10.3390/polym9030096
  17. C. Choy, W. Luk, and F. Chen, “Thermal Conductivity of Highly Oriented Polyethylene”, Polymer, 1978, 19, 155-162. https://doi.org/10.1016/0032-3861(78)90032-0
  18. J. T. Yeh and S. S. Chang, "Ultradrawing Gel Films of Blends of Ultrahigh Molecular Weight Polyethylene and Low Molecular Weight Polyethylenes with Different Molecular Weights", J. Mater. Sci., 2000, 35, 3227-3236. https://doi.org/10.1023/a:1004858902462
  19. K. Chen, A. Zhang, P. Lu, and Z. Wu, "Rheological Behavior of Ultrahigh Molecular Weight Polyethylene Semidilute Solutions. II. Effect of Aluminium Stearate", J. Appl. Polym. Sci., 1989, 38, 1377-1382. https://doi.org/10.1002/app.1989.070380716
  20. A. Zhang, K. Chen, H. Zhao, and Z. Wu, "Rheological Behavior of Ultrahigh Molecular Weight Polyethylene Semidilute Solutions. I. Solvent Effect", J. Appl. Polym. Sci., 1989, 38, 1369-1375. https://doi.org/10.1002/app.1989.070380715
  21. A. Laska, “Comparison of Conventional and Crosslinked Ultra High Molecular Weight Polyethylene (UHMWPE) Used in Hip Implant”, World Scientific News, 2017, 1, 51-60.
  22. L. E. Alexander, "X-ray Diffraction Methods in Polymer Science", Wiley, NY, 1969, Chap. 7.