References
- Alin, N., Bensow, R.E., Fureby, C., Huuva, T., Svennberg, U., 2010. Current capabilities of DES and LES for submarines at straight course. J. Ship Res. 54 (3), 184-196. https://doi.org/10.5957/jsr.2010.54.3.184
- Boswell, R.J., 1971. Design, Cavitation Performance, and Open-Water Performance of a Series of Research Skewed Propellers, Report 3339. Naval Ship Research and development center,, Washington D.C., USA.
- Carlton, J., 2012. Marine Propellers and Propulsion, third ed. Elsevier Ltd, Oxford OX5 UK.
- Chase, N., Carrica, P.M., 2013. Submarine propeller computations and application to self- propulsion of DARPA Suboff. Ocean Eng. 60, 68-80. https://doi.org/10.1016/j.oceaneng.2012.12.029
- Dubbioso, G., Muscari, R., Di Mascio, A., 2013. Analysis of a marine propeller operating in oblique flow. Comput. Fluids 75, 86-102. https://doi.org/10.1016/j.compfluid.2013.01.017
- Dubbioso, G., Muscari, R., Di Mascio, A., 2014. Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles. Comput. Fluids 92, 56-81. https://doi.org/10.1016/j.compfluid.2013.11.032
- Dubbioso, G., Broglia, R., Zaghi, S., 2017. CFD analysis of turning abilities of a submarine model. Ocean Eng. 129, 459-479 (a). https://doi.org/10.1016/j.oceaneng.2016.10.046
- Dubbiosoa, G., Muscari, R., Ortolani, F., Di Mascio, A., 2017. Analysis of propeller bearing loads by CFD. Part I: straight ahead and steady turning maneuvers. Ocean. Eng. 130, 241-259 (b). https://doi.org/10.1016/j.oceaneng.2016.12.004
-
Fureby, C., Anderson, B., Clarke, D., Erm, L., Henbest, S., Giacobello, M., Jones, D., Nguyen, M., Johansson, M., Jones, M., Kumar, C., Lee, S.-K., Manovski, P., Norrison, D., Petterson, K., Seil, G.,Woodyatt, B., Zhu, S., 2016. Experimental and numerical study of a generic conventional submarine at
$10^{\circ}$ yaw. Ocean Eng. 116, 1-20. https://doi.org/10.1016/j.oceaneng.2016.01.001 - Groves, N., Huang, T.T., 1989. Chang M. S. Geometric Characteristics of DARPA SUBOFF Models (DTRC Models Nos. 5470 and 5471). Technical Report DTRC/SHD 1298-01, pp. 1-75.
- He, Y.S., Wang, G.Q., 1984. Propeller Exciting Force. Shanghai Jiao Tong University Press, Shanghai, China.
- Holloway, A.G.L., Jeans, T.L., Watt, G.D., 2015. Flow separation from submarine shaped bodies of revolution in steady turning. Ocean Eng. 108, 426-438. https://doi.org/10.1016/j.oceaneng.2015.07.052
- Huang, T., Liu, H.L., Groves, N.C., Forlini, T., Blanton, J., Gowing, S., 1992. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program. In: Proceeding of 19th Symposium on Naval Hydrodynamics, Seoul, Korea.
- Huang, T., Liu, H.L., Groves, N.C., 1998. Experiments of the DARPA SUBOFF Program. Technical Report DTRC/SHD-1298-02.
- Jeong, J., Hussain, F., 1995. On the identification of a vortex. J. Fluid Mech. 285, 69-94. https://doi.org/10.1017/S0022112095000462
- Kim, H., Ranmuthugala, D., Leong, Z.Q., Chin, C., 2018. Six-DOF simulations of an underwater vehicle undergoing straight line and steady turning manoeuvres. Ocean Eng. 150, 102-112. https://doi.org/10.1016/j.oceaneng.2017.12.048
- Liefvendahl, M., Tr€oeng, C., 2011. Computation of cycle-to-cycle variation in blade load for a submarine propeller using LES. In: Proceedings of Second International Symposium on Marine Propulsors, Hamburg, Germany.
- Renilson, M., 2015. Submarine Hydrodynamics. SpringerBriefs in Applied Sciences and Technology.
- Roddy, R.F., 1990. Investigation of the Stability and Control Characteristics of Several Configurations of the DARPA SUBOFF Model (DTRC Model 5470) from Captive-Model Experiments. Technical Report DTRC/SHD 1298-08, pp. 1-108.
- Shih, T.H., Liou, W.W., Shabir, A., Zhu, J., 1995. A new eddy viscosity model for high Reynolds number turbulent flows - model development and validation. Comput. Fluids 24, 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
- Sun, S., Li, L., Wang, C., Zhang, H.Y., 2018. Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow. Int. J. Naval Arch. Ocean Eng. 10, 69-84. https://doi.org/10.1016/j.ijnaoe.2017.03.005
- Wang, C., Sun, S., Li, L., Ye, L.Y., 2016. Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system. Int. J. Naval Arch. Ocean Eng. 8, 589-601. https://doi.org/10.1016/j.ijnaoe.2016.06.003
- Zierke, W.C., 1997. A Physics-Based Means of Computing the Flow Around a Maneuvering Underwater Vehicle. Technical Report No TR 97-002. Pennsylvania State University.