DOI QR코드

DOI QR Code

A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Zheng, Xing (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Ma, Qingwei (Schools of Mathematics, Computer Science and Engineering, City, University of London) ;
  • Hu, Zhenhong (College of Shipbuilding Engineering, Harbin Engineering University)
  • Received : 2018.07.29
  • Accepted : 2019.02.19
  • Published : 2019.02.18

Abstract

In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.

Keywords

References

  1. Adami, S., Hu, X.Y., Adams, N.A., 2012. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231 (21), 7057-7075. https://doi.org/10.1016/j.jcp.2012.05.005
  2. Aksnes, V., 2010. A simplified interaction model for moored ships in level ice. Cold Reg. Sci. Technol. 63 (1), 29-39. https://doi.org/10.1016/j.coldregions.2010.05.002
  3. Benz, W., Asphaug, E., 1995. Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253-265. https://doi.org/10.1016/0010-4655(94)00176-3
  4. Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M., 2013. Nonlinear water wave interaction with floating bodies in sph. J. Fluid Struct. 42 (4), 112-129. https://doi.org/10.1016/j.jfluidstructs.2013.05.010
  5. Bui, H., Fukagawa, R., Sako, K., Ohno, S., 2008. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elasticeplastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32 (12), 1537-1570. https://doi.org/10.1002/nag.688
  6. Cho, S.R., Jeong, S.Y., Lee, S., 2013. Development of effective model test in pack ice conditions of square-type ice model basin. Ocean Eng. 67 (67), 35-44. https://doi.org/10.1016/j.oceaneng.2013.04.011
  7. Cho, S.R., Lee, S., 2015. A prediction method of ice breaking resistance using a multiple regression analysis. Int. J. Nav. Arch. Ocean. 7 (4), 708-719. https://doi.org/10.1515/ijnaoe-2015-0050
  8. Deb, D., Pramanik, R., 2013. Failure process of brittle rock using smoothed particle hydrodynamics. J. Eng. Mech. 139 (11), 1551-1565. https://doi.org/10.1061/(asce)em.1943-7889.0000592
  9. Eghtesad, A., Shafiei, A.R., Mahzoon, M., 2012. A new fluidesolid interface algorithm for simulating fluid structure problems in fgm plates. J. Fluid Struct. 30 (2), 141-158. https://doi.org/10.1016/j.jfluidstructs.2012.02.005
  10. Gao, Y., Hu, Z., Ringsberg, J.W., Wang, J., 2015. An elasticeplastic ice material model for ship-iceberg collision simulations. Ocean Eng. 102, 27-39. https://doi.org/10.1016/j.oceaneng.2015.04.047
  11. Gotoh, H., Khayyer, A., 2018. On the state-of-the-art of particle methods for coastal and ocean engineering. Coast Eng. J. 60 (1), 79-103. https://doi.org/10.1080/21664250.2018.1436243
  12. Gray, J., Monaghan, J., Swift, R., 2001. SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190 (49-50), 6641-6662. https://doi.org/10.1016/S0045-7825(01)00254-7
  13. Hu, J., Zhou, L., 2015. Experimental and numerical study on ice resistance for icebreaking vessels. Int. J. Nav. Arch. Ocean. 7 (3), 626-639. https://doi.org/10.1515/ijnaoe-2015-0044
  14. Jeong, S.Y., Choi, K., Kang, K.J., Ha, J.S., 2017. Prediction of ship resistance in level ice based on empirical approach. Int. J. Nav. Arch. Ocean. 9 (6).
  15. Ji, S.Y.,Wang, A.L., Su, J., Yue, Q.J., 2011. Experimental studies on elastic modulus and flexural strength of sea ice in the bohai sea. J. Cold Reg. Eng. 25 (4), 182-195. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000035
  16. Jordaan, I.J., 2001. Mechanics of iceestructure interaction. Eng. Fract. Mech. 68 (17), 1923-1960. https://doi.org/10.1016/S0013-7944(01)00032-7
  17. Keinonen, A.J., Browne, R., Revill, C., Reynolds, A., 1996. Icebreaker Characteristics Synthesis, Report TP 12812E. The Transportation Development Centre, Transport Canada, Ontario.
  18. Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y., 2018. An enhanced isph-sph coupled method for simulation of incompressible fluid-elastic structure interactions. Comput. Phys. Commun. 232, 139-164. https://doi.org/10.1016/j.cpc.2018.05.012
  19. Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, K., Shao, S., 2017. An enhanced particle method for simulation of fluid flow interactions with saturated porous media. Journal of JSCE Ser B2 73 (2), I_841-I_846. https://doi.org/10.2208/jscejhe.73.I_841
  20. Lau, M., Akinturk, A., 2011. KORDI Araon Model Tests in Ice Using the Planar Motion Mechanism, Report LM-2011-04. Canada: St. John's, Newfoundland and Labrador. National Research Council - Institute for Ocean Technology.
  21. Libersky, L.D., Petschek, A.G., 1991. Smoothed particle hydrodynamics with strength of materials. In: Trease, H., Friits, J., Crowley, W. (Eds.), Proceedings of the Next Free Lagrange Conference, vol. 395. Springer, New York, pp. 248-257.
  22. Lindqvist, G., 1989. A straightforward method for calculation of ice resistance of ships. The 10th International Conference on Port and Ocean Engineering Under Arctic Conditions 2, 722-735.
  23. Liu, R.W., Xue, Y.Z., Lu, X.K., Cheng, W.X., 2018. Simulation of ship navigation in ice rubble based on peridynamics. Ocean Eng. 148, 286-298. https://doi.org/10.1016/j.oceaneng.2017.11.034
  24. Long, S.Y., 2014. Meshless Methods and Their Applications in Solid Mechanics. Science Press, Beijing, China, pp. 235-238.
  25. Lubbad, R., Loset, S., 2011. A numerical model for real-time simulation of ship-ice interaction. Cold Reg. Sci. Technol. 65, 111-127. https://doi.org/10.1016/j.coldregions.2010.09.004
  26. Lu, W.J., Serre, N., Hoyland, K.V., Evers, K.U., 2013. Rubble Ice Transport on Arctic Offshore Structures (RITAS), part IV: tactile sensor measurement of the level ice load on inclined plate. In: Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions, Espoo, Finland.
  27. Ma, Q.W., 2008. A new meshless interpolation scheme for MLPG_R method. CMESComput. Model. Eng. Sci. 23 (2), 75-89.
  28. Matlock, H., Dawkins, W.P., Panak, J.J., 1969. A model for the prediction of icestructure interaction. In: Annual Offshore Technology Conference, Dallas, USA, pp. 687-694.
  29. Monaghan, J.J., Lattanzio, J.C., 1985. A refined particle method for astrophysical problems. Astron. Astrophys. 149 (149), 135-143.
  30. Monaghan, J.J., 1992. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
  31. Monaghan, J.J., 2000. SPH without a tensile instability. J. Comput. Phys. 159 (2), 290-311. https://doi.org/10.1006/jcph.2000.6439
  32. Morris, J., Fox, P., Zhu, Y., 1997. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136 (1), 214-226. https://doi.org/10.1006/jcph.1997.5776
  33. Paavilainen, J., Tuhkuri, J., Polojarvi, A., 2011. 2D numerical simulation of ice rubble formation process against an inclined structure. Cold Reg. Sci. Technol. 68 (1-2), 20-34. https://doi.org/10.1016/j.coldregions.2011.05.003
  34. Randles, P., Libersky, L., 1996. Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139 (1), 375-408. https://doi.org/10.1016/S0045-7825(96)01090-0
  35. Schulson, E.M., 1997. The brittle failure of ice under compression. J. Phys. Chem. B 101 (32), 6254-6258. https://doi.org/10.1021/jp9632192
  36. Schulson, E.M., 2001. Brittle failure of ice. Eng. Fract. Mech. 68 (17), 1839-1887. https://doi.org/10.1016/S0013-7944(01)00037-6
  37. Schulson, E.M., Duval, P., 2009. Creep and Fracture of Ice. Cambridge University Press, Cambridge, UK.
  38. Shao, S.D., Lo, E.Y.M., 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26 (7), 787-800. https://doi.org/10.1016/S0309-1708(03)00030-7
  39. Shi, Y., Li, S.W., Chen, H.B., He, M., Shao, S.D., 2018. Improved SPH simulation of spilled oil contained by flexible floating boom under waveecurrent coupling condition. J. Fluid Struct. 76, 272-300. https://doi.org/10.1016/j.jfluidstructs.2017.09.014
  40. Su, B., Riska, K., Moan, T., 2010. A numerical method for the prediction of ship performance in level ice. Cold Reg. Sci. Technol. 60, 177-188. https://doi.org/10.1016/j.coldregions.2009.11.006
  41. Swegle, J., Hicks, D., Attaway, S., 1995. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116 (1), 123-134. https://doi.org/10.1006/jcph.1995.1010
  42. Valanto, P., 2001. The resistance of ships in level ice. SNAME Transactions 109, 53-83.
  43. Withalm, M., Hoffmann, N.P., 2010. Simulation of full-scale ice-structure-interaction by an extended Matlock-model. Cold Reg. Sci. Technol. 60, 130-136. https://doi.org/10.1016/j.coldregions.2009.09.006
  44. Zhang, N.B., Zheng, X., Ma, Q.W., 2017. Updated smoothed particle hydrodynamics for simulating bending and compression failure progress of ice. Water 9 (11), 882. https://doi.org/10.3390/w9110882
  45. Zheng, X., Ma, Q.W., Duan, W.Y., 2014. Incompressible SPH method based on Rankine source solution for violent water wave simulation. J. Comput. Phys. 276, 291-314. https://doi.org/10.1016/j.jcp.2014.07.036
  46. Zheng, X., Shao, S.D., Khayyer, A., Duan, W.Y., Ma, Q.W., Liao, K.P., 2017. Corrected first-order derivative ISPH in water wave simulations. Coast Eng. J. 59 (1), 1750010. https://doi.org/10.1142/s0578563417500103
  47. Zhou, L., Chuang, Z., Ji, C., 2018a. Ice forces acting on towed ship in level ice with straight drift. part І: analysis of model test data. Int. J. Nav. Arch. Ocean. 10 (1), 60-68. https://doi.org/10.1016/j.ijnaoe.2017.03.008
  48. Zhou, L., Chuang, Z., Ji, C., 2018b. Ice forces acting on towed ship in level ice with straight drift. part ІІ: numerical simulation. Int. J. Nav. Arch. Ocean. 10 (2), 119-128. https://doi.org/10.1016/j.ijnaoe.2017.06.001
  49. Zhou, L., Riska, K., Moan, T., Su, B., 2013. Numerical modeling of ice loads on an icebreaking tanker: comparing simulations with models tests. Cold Reg. Sci. Technol. 87 (3), 33-46. https://doi.org/10.1016/j.coldregions.2012.11.006
  50. Zhou, Q., Peng, H., Qiu, W., 2016. Numerical investigations of ship-ice interaction and maneuvering performance in level ice. Cold Reg. Sci. Technol. 122, 36-49. https://doi.org/10.1016/j.coldregions.2015.10.015

Cited by

  1. 쐐기형 모형선 주위 연속 쇄빙과정에 관한 입자 기반 수치 시뮬레이션 vol.57, pp.1, 2019, https://doi.org/10.3744/snak.2020.57.1.023
  2. An Approach to Determine Optimal Bow Configuration of Polar Ships under Combined Ice and Calm-Water Conditions vol.9, pp.6, 2019, https://doi.org/10.3390/jmse9060680
  3. Numerical study on dynamic icebreaking process of an icebreaker by ordinary state-based peridynamics and continuous contact detection algorithm vol.233, 2019, https://doi.org/10.1016/j.oceaneng.2021.109148
  4. Ice-breaking performance sensitivity of the polar icebreaker to structure, control and ice parameters under different prediction models vol.236, 2019, https://doi.org/10.1016/j.oceaneng.2021.109453
  5. Numerical simulation on an icebreaking vessel with fixed drift angles in level ice vol.244, 2019, https://doi.org/10.1016/j.oceaneng.2021.110382
  6. A Finite Element Model for Compressive Ice Loads Based on a Mohr-Coulomb Material and the Node Splitting Technique vol.144, pp.2, 2022, https://doi.org/10.1115/1.4052746