Korean J. Math. **27** (2019), No. 4, pp. 1159–1180 http://dx.doi.org/10.11568/kjm.2019.27.4.1159

e-FUZZY FILTERS OF MS-ALGEBRAS

BERHANU ASSAYE ALABA AND TEFERI GETACHEW ALEMAYEHU*

ABSTRACT. In this article, we present the notion of e-fuzzy filters in an MS-Algebra and characterize in terms of equivalent conditions. The concept of D-fuzzy filters is studied and the set of equivalent conditions under which every e-fuzzy filter is an D-fuzzy filter are observed. Moreover we study some properties of the space of all prime e-fuzzy filters of an MS-algebra.

1. Introduction

MS-algebras introduced by Blyth and Varlet [2] as common abstraction of de Morgan algebras and MS-algebras. And also they [3] characterized the subvarieties of MS-algebras. Recently Roa [8] introduced *e*-filters of MS-algebras.

On the other hand, fuzzy set theory was introduced by Zadeh [11]. Next, fuzzy groups were studied by Rosenfield [7]. Many scholars have used this idea to different mathematical branches such as semi-group, ring, semi-ring, near-ring, lattice etc. For instance Yuan and Wu [10] introduced the notion of fuzzy sublattice and fuzzy ideals of lattice, Swamy and Raju [9] fuzzy ideals and congruences of lattices, Kumar [6], topologized the set of all fuzzy prime ideals of a commutative ring with unity and studied some properties of the space, Kumar [6], studied about the

Received February 12, 2019. Revised August 20, 2019. Accepted September 19, 2019.

²⁰¹⁰ Mathematics Subject Classification: 06D99, 06D05, 06D30.

Key words and phrases: MS-algebras, *e*-fuzzy filters, *D*-fuzzy filter, prime *e*-fuzzy filters, maximal *e*-fuzzy filters.

^{*} Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

space of prime fuzzy ideals of a ring in different way and Hadji-Abadi and Zahedi [4] extended the result of Kumar. In this article our aim is to present *e*-fuzzy filters of an MS-algebra and that every *e*-fuzzy filter of an MS-algebra is an *D*-fuzzy filter. Finally we discuss the concept of topological space on the set all prime *e*-fuzzy filters.

2. Preliminaries

In this section, we recall basic definitions and results which will be used in this article. For in details in ordinary crisp theory of e-filters of MS-algebras, we refer to [8].

DEFINITION 2.1. [2] An MS-algebra is an algebra $(L, \lor, \land, \circ, 0, 1)$ of type (2, 2, 1, 0, 0) such that $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice and $a \to a^{\circ}$ is a unary operation satisfying the conditions $a \leq a^{\circ\circ}$, $(a \land b)^{\circ} = a^{\circ} \lor b^{\circ}$ and $1^{\circ} = 0$ for all $a, b \in L$

A de Morgan algebra is an MS-algebra satisfying $a^{\circ\circ} = a$ for all $a \in L$.

LEMMA 2.2. [2] Let L be any MS-algebra and $a, b \in L$. Then

(1) $0^{\circ} = 1$ (2) $a \leq b \Rightarrow b^{\circ} \leq a^{\circ}$ (3) $a^{\circ\circ\circ} = a^{\circ}$ (4) $(a \lor b)^{\circ} = a^{\circ} \land b^{\circ}$ (5) $(a \lor b)^{\circ\circ} = a^{\circ\circ} \lor b^{\circ\circ}$ (6) $(a \land b)^{\circ\circ} = a^{\circ\circ} \land b^{\circ\circ}$

DEFINITION 2.3. [8] For any filter F of an MS-algebra L, define F^e as the set $F^e = \{x \in L/x^\circ \le a^\circ \text{ for some } a \in F\}$

DEFINITION 2.4. [8] A filter F of an MS-algebra L is called an e-filter of L if $F = F^e$

An element a of an MS-algebra L is called a dense element if $a^{\circ} = 0$. The set of all dense elements in MS-algebra L is denoted by D.

DEFINITION 2.5. [8] A filter F of an MS-algebra L is called a D-filter of L if $D \subseteq F$.

Remember that, for any set S a function $\mu : S \longrightarrow ([0,1], \wedge, \vee)$ is called a fuzzy subset of S, where [0,1] is a unit interval, $\alpha \wedge \beta = \min\{\alpha, \beta\}$ and $\alpha \vee \beta = \max\{\alpha, \beta\}$ for all $\alpha, \beta \in [0,1]$. Let $\mu : S \to [0, 1]$. For every $\alpha \in [0, 1]$, the level subset μ of S is $\mu_{\alpha} = \{x \in L : \alpha \leq \mu(x)\}.$

DEFINITION 2.6. Let $x \in S$, $0 < \alpha \leq 1$. A fuzzy point x_{α} of S is a fuzzy subset of S defined as

$$x_{\alpha}(z) = \begin{cases} \alpha & \text{if } z = x \\ 0 & \text{otherwise} \end{cases}$$

We define the binary operations "+" and "." on all fuzzy subsets of a lattice L as: $(\mu + \theta)(x) = \sup\{\mu(a) \land \theta(b) : a, b \in L, a \lor b = x\}$ and $(\mu.\theta)(x) = \sup\{\mu(a) \land \theta(b) : a, b \in L, a \land b = x\}.$

The intersection of fuzzy filters of L is a fuzzy filter. However the union of fuzzy filters may not be fuzzy filter. The least upper bound of a fuzzy filters μ and θ of L is denoted as $\mu \lor \theta = \cap \{\sigma \in FF(L) : \mu \cup \theta \subseteq \sigma\}$.

If μ and θ are fuzzy filters of L, then $\mu.\theta = \mu \lor \theta$ and $\mu + \theta = \mu \cap \theta$

Let μ be a fuzzy subset of a lattice L. The smallest fuzzy filter of L containing μ is called a fuzzy filter of L induced by μ and denoted by $[\mu)$ and $[\mu) = \cap \{\theta : \theta \text{ is a fuzzy filter of } L, \mu \subseteq \theta\}$

DEFINITION 2.7. [9] A fuzzy subset μ of a bounded lattice L is said to be a fuzzy ideal of L, if for all $x, y \in L$,

1. $\mu(0) = 1$, 2. $\mu(x \lor y) \ge \mu(x) \land \mu(y)$ 3. $\mu(x \land y) \ge \mu(x) \lor \mu(y)$ for all $x, y \in L$.

In [9], Swamy and Raju observed that, a fuzzy subset μ of a a bounded lattice L is a fuzzy ideal of L if and only if $\mu(0) = 1$ and $\mu(x \lor y) = \mu(x) \land \mu(y)$ for all $x, y \in L$.

DEFINITION 2.8. [9] A fuzzy subset μ of a bounded lattice L is said to be a fuzzy filter of L, if for all $x, y \in L$,

1. $\mu(1) = 1$, 2. $\mu(x \lor y) \ge \mu(x) \land \mu(y)$ 3. $\mu(x \land y) \ge \mu(x) \lor \mu(y)$ for all $x, y \in L$. In [9] a fuzzy subset μ of a bounded lattice L is a fuzzy filter of L if and only if $\mu(1) = 1$ and $\mu(x \lor y) = \mu(x) \land \mu(y)$ for all $x, y \in L$.

THEOREM 2.9. [9] Let μ be a fuzzy subset of L. Then μ is a fuzzy ideal of L if and only if, for any $\alpha \in [0, 1]$, μ_{α} is an ideal of L.

DEFINITION 2.10. [9] A proper fuzzy ideal μ of L is called prime fuzzy ideal of L if for any two fuzzy ideals λ, ν of $L, \lambda \cap \nu \subseteq \mu \Rightarrow \lambda \subseteq \mu$ or $\nu \subseteq \mu$.

 μ is a prime fuzzy ideal of L if and only if $Im\mu = \{1, \beta\}$, $\beta \in [0, 1)$ and $\mu_* = \{x \in L : \mu(x) = 1\}$ is a prime ideal of L.

Throughout in the next sections L stands for an MS-algebra unless otherwise mentioned.

3. *e*-Fuzzy Filters of MS-algebras

1162

In this section, the concept of e- fuzzy filters is introduced and some basic properties of e-fuzzy filter are observed. The concept of D-fuzzy filter is introduced and we obtain a set of equivalent conditions for any e-fuzzy filter to become an D-fuzzy filter. We prove that the class of e-fuzzy filters $\mathcal{FF}^e(L)$ is a complete distributive lattice with relation \subseteq .

DEFINITION 3.1. Let μ be any fuzzy filter of an MS-algebra L, an extension of μ define as the fuzzy subset $\mu^e(x) = \sup\{\mu(a) : x^\circ \leq a^\circ, a \in L\}$ for all $x \in L$.

The following Lemma reveals some basic properties of μ^e

LEMMA 3.2. Let μ and ν be any two fuzzy filters of an MS-algebra L. Then

(1) μ^e is a fuzzy filter of L (2) $\mu \subseteq \mu^e$, (3) $\mu \subseteq \nu \Rightarrow \mu^e \subseteq \nu^e$, (4) $(\mu \cap \nu)^e = \mu^e \cap \nu^e$, (5) $(\mu^e)^e = \mu^e$.

Proof. For elements $x, y, a, b \in L$,

 $e\mbox{-}{\rm Fuzzy}$ filters of MS-algebras

(1) $\mu^e(1) = \sup\{\mu(a) : 1^\circ \le a^\circ, \ a \in L\} \ge \mu(1) = 1$. Hence $\mu^e(1) = 1$. Next,

$$\begin{split} \mu^{e}(x) \wedge \mu^{e}(y) &= \sup\{\mu(a) : x^{\circ} \leq a^{\circ}\} \wedge \sup\{\mu(b) : y^{\circ} \leq b^{\circ}\}\\ &= \sup\{\mu(a) \wedge \mu(b) : x^{\circ} \leq a^{\circ}, \ y^{\circ} \leq b^{\circ}\}\\ &\leq \sup\{\mu(a \wedge b) : (x \wedge y)^{\circ} \leq (a \wedge b)^{\circ}\}\\ &= \mu^{e}(x \wedge y) \end{split}$$

and

$$\begin{array}{lll} \mu^{e}(x) \lor \mu^{e}(y) &=& sup\{\mu(a) : x^{\circ} \leq a^{\circ}\} \lor sup\{\mu(b) : y^{\circ} \leq b^{\circ}\}\\ &=& sup\{\mu(a) \lor \mu(b) : x^{\circ} \leq a^{\circ}, \; y^{\circ} \leq b^{\circ}\}\\ &\leq& sup\{\mu(a \lor b) : (x \lor y)^{\circ} \leq (a \lor b)^{\circ}\}\\ &=& \mu^{e}(x \lor y) \end{array}$$

Thus μ^e is a fuzzy filter of L.

(2) $\mu^e(x) = \sup\{\mu(a) : x^\circ \le a^\circ\} \ge \mu(x)$. Hence $\mu \subseteq \mu^e$. (3) Suppose that $\mu \subseteq \nu$, then $\nu^e(x) = \sup\{\nu(a) : x^\circ \le a^\circ\} \ge \sup\{\mu(a) : x^\circ \le a^\circ\} = \mu^e(x)$. Hence $\mu^e \subseteq \nu^e$ (4) By (3) $(\mu \cap \nu)^e \subseteq \mu^e \cap \nu^e$. Conversely

Conversely,

$$\begin{aligned} (\mu^{e} \cap \nu^{e})(x) &= \mu^{e}(x) \wedge \nu^{e}(x) \\ &= \sup\{\mu(a) : x^{\circ} \leq a^{\circ}\} \wedge \sup\{\nu(b) : x^{\circ} \leq b^{\circ}\} \\ &\leq \sup\{\mu(a^{\circ\circ}) : x^{\circ\circ\circ} \leq a^{\circ\circ\circ}\} \wedge \sup\{\nu(b^{\circ\circ}) : x^{\circ\circ\circ} \leq b^{\circ\circ\circ}\} \\ &= \sup\{\mu(a^{\circ\circ}) \wedge \nu(b^{\circ\circ}) : x^{\circ\circ\circ} \leq a^{\circ\circ\circ} \wedge b^{\circ\circ\circ}\} \\ &\leq \sup\{\mu(a^{\circ\circ} \vee b^{\circ\circ}) \wedge \nu(a^{\circ\circ} \vee b^{\circ\circ}) : x^{\circ\circ\circ} \leq a^{\circ\circ\circ} \wedge b^{\circ\circ\circ}\} \\ &\leq \sup\{(\mu \cap \nu)(a^{\circ\circ} \vee b^{\circ\circ}) : x^{\circ} \leq ((a^{\circ\circ} \vee b^{\circ\circ})^{\circ}\} \\ &= (\mu \cap \nu)^{e}(x) \end{aligned}$$

Hence $(\mu^e \cap \nu^e) = (\mu \cap \nu)^e$. (5)

$$\begin{array}{lll} (\mu^{e})^{e}(x) &=& \sup\{\mu^{e}(a): x^{\circ} \leq a^{\circ}, a \in L\}\\ &=& \sup\{\sup\{\mu(z): a^{\circ} \leq z^{\circ}, \ z \in L\}: x^{\circ} \leq a^{\circ}, a, x \in L\}\\ &=& \sup\{\mu(z): x^{\circ} \leq z^{\circ}, \ z \in L\}\\ &=& \mu^{e}(x) \end{array}$$

Hence $(\mu^e)^e = \mu^e$.

Now we define *e*-fuzzy filter in an MS-algebra.

DEFINITION 3.3. A fuzzy filter μ of an MS-algebra L is called an e-fuzzy filter of L if $\mu = \mu^e$.

THEOREM 3.4. μ is an e-fuzzy filter of an MS-algebra L if and only if, $\forall \alpha \in [0, 1], \mu_{\alpha}$ is an e-filter of L.

THEOREM 3.5. F is an e-filter of an MS-algebra L if and only if χ_F is an e-fuzzy filter of L.

LEMMA 3.6. Let D be the set of all dense elements of L. Then χ_D is an e-fuzzy filter.

In the Lemma 3.2(4), we can mention that the intersection of two *e*-fuzzy filters of an MS-algebra is an *e*-fuzzy filter. But the union of two *e*-fuzzy filters may not be the *e*-fuzzy filter.

EXAMPLE 3.7. Let L be the following MS-algebra described in the diagram 1.

Consider μ and ν a fuzzy set of L defined as $\mu(a) = \mu(0) = 0.5$, $\mu(b) = \mu(1) = 1$ and $\nu(0) = \nu(b) = 0.7$, $\nu(a) = 0.8$ and $\nu(1) = 1$. It can be easily verified that μ and ν are *e*-fuzzy filters of L. But $\mu \cup \nu$ is not an *e*-fuzzy filter of L. Since $\mu \cup \nu$ is not an fuzzy filter of L i.e

$$(\mu \cup \nu)(a \land b) = max\{\mu(a \land b), \nu(a \land b)\} = max\{\mu(0), \nu(0)\}$$
$$= max\{0.5, 0.7\} = 0.7$$

1164

e-Fuzzy filters of MS-algebras

$$\begin{aligned} (\mu \cup \nu)(a) \wedge (\mu \cup \nu)(b) &= \max\{\mu(a), \nu(a)\} \wedge \max\{\mu(b), \nu(b)\} \\ &= \max\{0.5, 0.8\} \wedge \max\{1, 0.7\} = 0.8 \wedge 1 = 0.8 \end{aligned}$$

Thus $(\mu \cup \sigma)(a \land b) = 0.7 \neq 0.8 = (\mu \cup \sigma)(a) \land (\mu \cup \sigma)(b)$

COROLLARY 3.8. Let $\{\mu_i : i \in \Omega\}$ be a family of *e*-fuzzy filters of an MS-algebra L. Then $\bigcap_{i \in \Omega} \mu_i$ is an *e*-fuzzy filter of L.

In the following, we characterize the *e*-fuzzy filters

THEOREM 3.9. Let μ be a fuzzy filter of an MS-algebra L. Then, the following are equivalent.

(1) μ is an *e*-fuzzy filter,

(2) $\mu(x) = \mu(x^{\circ \circ}),$

(3) For $x, y \in L$, $x^{\circ} = y^{\circ}$ implies $\mu(x) = \mu(y)$.

Proof. (1) \Rightarrow (2). Suppose that μ is an *e*-fuzzy filter of *L*. For $x, a \in L, \ \mu(x) = \mu^e(x) = \sup\{\mu(a) : x^\circ \leq a^\circ\} = \sup\{\mu(a) : x^{\circ\circ\circ} = x^\circ \leq a^\circ\} = \mu^e(x^{\circ\circ}) = \mu(x^{\circ\circ}).$

(2) \Rightarrow (3). Suppose that condition (2) holds. Let $x, y \in L, x^{\circ} = y^{\circ}$. Then $x^{\circ\circ} = y^{\circ\circ}$. Thus $\mu(x) = \mu(x^{\circ\circ}) = \mu(y^{\circ\circ}) = \mu(y)$. Hence $\mu(x) = \mu(y)$.

(3) \Rightarrow (1). Suppose that condition (3) holds. $\mu^e(x) = \sup\{\mu(a) : x^\circ \le a^\circ\} = \sup\{\mu(a \land x) : x^\circ \le a^\circ\} \le \mu(x)$. Since by (3) $a^\circ = x^\circ \lor a^\circ = (a \land x)^\circ$ and $\mu(x \land a) \le \mu(x)$. This implies $\mu^e \subseteq \mu$. Clearly $\mu \subseteq \mu^e$. Hence μ is an *e*-filter of *L*.

THEOREM 3.10. For any fuzzy filter μ of an MS-algebra L, a fuzzy subset $\mu^{\circ}(x) = \sup\{\mu(b) : x^{\circ} \land b = 0, b \in L\} \forall x \in L$ is an e-fuzzy filter.

Proof. For any $x, y \in L$,

$$\mu^{\circ}(1) = \sup\{\mu(b) : 1^{\circ} \land b = 0, \ b \in L\} \ge \mu(1) = 1$$

and

$$\begin{split} \mu^{\circ}(x \wedge y) &= \sup\{\mu(b) : (x \wedge y)^{\circ} \wedge b = 0, \ b \in L\} \\ &= \sup\{\mu(b) : (x^{\circ} \vee y^{\circ}) \wedge b = 0, \ b \in L\} \\ &= \sup\{\mu(b) \wedge \mu(b) : (x^{\circ} \wedge b) \vee (y^{\circ} \wedge b) = 0, \ b \in L\} \\ &= \sup\{\mu(b) : x^{\circ} \wedge b = 0, \ b \in L\} \wedge \sup\{\mu(b) : y^{\circ} \wedge b = 0, \ b \in L\} \\ &= \mu^{\circ}(x) \wedge \mu^{\circ}(y) \end{split}$$

This implies μ° is a fuzzy filter of L. Next we prove that μ is an *e*-fuzzy filter. Now

 $\mu^{\circ}(x^{\circ\circ}) = \sup\{\mu(c) : x^{\circ\circ\circ} \land c = 0, \ c \in L\} = \sup\{\mu(c) : x^{\circ} \land c = 0, \ c \in L\} = \mu^{\circ}(x).$ Therefor μ° is an *e*-fuzzy filter of *L*. \Box

DEFINITION 3.11. A fuzzy filter μ of an MS-algebra L is called a D-fuzzy filter of L if $\chi_D \subseteq \mu$.

THEOREM 3.12. A fuzzy filter μ of an MS-algebra L is a D-fuzzy filter of L if and only if, $\forall \alpha \in [0, 1]$, μ_{α} is a D-filter.

Proof. Suppose that μ is a D-fuzzy filter of L, then $\chi_D(x) \leq \mu(x) \forall x \in L$. Let $x \in D$. Then $\chi_D(x) = 1 \leq \mu(x)$. This implies $\mu(x) = 1$. This implies $x \in \mu_1 \subseteq \mu_\alpha \ \forall \alpha \in [0, 1]$, and so $D \subseteq \mu_\alpha$. Hence μ_α is a D-filter. Conversely, suppose that μ_α is a D-filter of L, $\forall \alpha \in [0, 1]$. If $x \notin D$, then $\chi_D(x) = 0 \leq \mu(x)$. If $x \in D$, then $x \in D \subseteq \mu_\alpha, \forall \alpha \in [0, 1]$. This implies $x \in D \subseteq \mu_1$, for $\alpha = 1$. Thus $\mu(x) \geq 1$. This implies $\chi_D(x) = 1 \leq \mu(x)$. Therefore for all $x \in L$, $\chi_D(x) \leq \mu(x)$. Hence the result.

THEOREM 3.13. F is a D-filter of L if and only if χ_F is a D-fuzzy filter of L.

THEOREM 3.14. Any e-fuzzy filter of an MS-algebra L is D-fuzzy filter.

Proof. Let μ be any e-fuzzy filter of L. For any $x \in L$. If $\chi_D(x) = 0$, then $\chi_D(x) \leq \mu(x)$. If $\chi_D(x) = 1$, then $x \in D$. Thus $\mu^e(x) = \sup\{\mu(a) : x^\circ \leq a^\circ, a \in L\} = \sup\{\mu(a) : x^{\circ\circ\circ} \leq a^\circ, a \in L\} = \mu^e(x^{\circ\circ}) = \mu(x^{\circ\circ}) = \mu(1) = 1$. This implies $\chi_D \subseteq \mu^e = \mu$. Hence μ is a D-fuzzy filter. \Box

COROLLARY 3.15. χ_D is the smallest e-fuzzy filter of an MS-algebra.

We denote the class of all *e*-fuzzy filters of an MS-algebra L by $\mathcal{FF}^{e}(L)$

THEOREM 3.16. The class $\mathcal{FF}^{e}(L)$ is a complete distributive lattice with relation \subseteq .

Proof. Since χ_D , $\chi_L \in \mathcal{FF}^e(L)$, $\mathcal{FF}^e(L) \neq \emptyset$. Clearly $(\mathcal{FF}^e(L), \subseteq)$ is a partially order set. Now for any $\mu, \sigma \in \mathcal{FF}^e(L)$, define $\mu \wedge \sigma = \mu \cap \sigma$ and $\mu \sqcup \sigma = (\mu \lor \sigma)^e$, where $(\mu \lor \sigma)^e(x) = \sup\{\mu(a) \land \mu(b) : x^\circ \leq (a \land b)^\circ, a, b \in L\} \forall x \in L$. It can be easily verified that $\mu \cap \sigma, (\mu \lor \sigma)^e \in \mathcal{FF}^e(L)$ and $\mu \cap \sigma$ is the greatest lower bound of μ and σ . We need to show $\mu \sqcup \sigma$ is

the least upper bound of μ and σ . Since $\mu, \sigma \subseteq \mu \lor \sigma \subseteq (\mu \lor \sigma)^e$, $(\mu \lor \sigma)^e$ is an upper bound of μ and σ . Let β be any *e*-fuzzy filter of *L* such that $\mu \subseteq \beta$ and $\sigma \subseteq \beta$.

$$(\mu \lor \sigma)^{e}(x) = Sup\{\mu(a) \land \mu(b) : (x)^{\circ} \le (a \land b)^{\circ} ; a, b \in L\}$$

$$\le Sup\{\beta(a) \land \beta(b) : (x)^{\circ} \le (a \land b)^{\circ}, a, b \in L\}$$

$$= Sup\{\beta(a \land b) : (x)^{\circ} \le (a \land b)^{\circ}, a, b \in L\}$$

$$= \beta^{e}(x) = \beta(x)$$

Hence $(\mu \vee \sigma)^e = \sup\{\mu, \sigma\}$. Thus $(\mathcal{FF}^e(L), \subseteq)$ is a lattice. Since $\chi_{\{D\}}$ and χ_L are the smallest and the greatest *e*-fuzzy filters of $\mathcal{FF}^e(L)$, $(\mathcal{FF}^e(L), \cap, \sqcup, \chi_{\{D\}}, \chi_L)$ is a bounded lattice. By Corollary 3.8 any subfamily of *e*-fuzzy filters of $\mathcal{FF}^e(L)$ has infimum in $\mathcal{FF}^e(L)$ and $\mathcal{FF}^e(L)$ has greatest element. Hence $(\mathcal{FF}^e(L), \cap, \sqcup, \chi_{\{D\}}, \chi_L)$ is a complete bounded lattice. For any μ, σ , and $\theta \in \mathcal{FF}^e(L)$, we obtain $(\mu \sqcup \sigma) \cap (\mu \sqcup \theta) = (\mu \vee \sigma)^e \cap (\mu \vee \theta)^e = ((\mu \vee \sigma) \cap (\mu \vee \theta))^e = (\mu \vee (\sigma \cap \theta))^e = \mu \sqcup (\sigma \cap \theta)$. Therefore $(\mathcal{FF}^e(L), \cap, \sqcup, \chi_{\{D\}}, \chi_L)$ is a bounded and complete distributive lattice.

4. Prime *e*-Fuzzy Filters and Maximal *e*-fuzzy Filters of MSalgebras

In this section, we introduce prime e-fuzzy filters and maximal e-fuzzy filters of MS-algebras and we discuss some properties of them.

DEFINITION 4.1. A proper *e*-fuzzy filter μ in MS-algebra L is called a prime *e*-fuzzy filter if for any fuzzy filters λ and ν of L, $\lambda \cap \nu \subseteq \mu \Rightarrow \lambda \subseteq \mu$ or $\nu \subseteq \mu$.

THEOREM 4.2. A proper filter F is a prime *e*-filter of L and $\alpha \in [0, 1)$ if and only if the fuzzy subset given by

$$F_{\alpha}^{1}(x) = \begin{cases} 1 & \text{if } x \in F \\ \alpha & \text{if } x \notin F \end{cases}$$

is a prime e-fuzzy filter of L.

Proof. Suppose that a proper filter F of L is a prime e-filter of L and $\alpha \in [0,1)$. Clearly F_{α}^{1} is a proper fuzzy filter of L. Since $(F_{\alpha}^{1})_{1} = F$ and $(F_{\alpha}^{1})_{\alpha} = L$ are e-filters of L. This implies by Theorem 3.4, F_{α}^{1} is a proper e-fuzzy filter of L. Now we prove that F_{α}^{1} is a prime e-fuzzy filter.

1168

Let ν and θ be any fuzzy filters of L such that $\nu \cap \theta \subseteq F_{\alpha}^{1}$. Suppose if possible that $\nu \not\subseteq F_{\alpha}^{1}$ and $\theta \not\subseteq F_{\alpha}^{1}$. Then there exist $x, y \in L$ such that $\nu(x) > F_{\alpha}^{1}(x)$ and $\theta(y) > F_{\alpha}^{1}(y)$. This indicates $F_{\alpha}^{1}(x) = F_{\alpha}^{1}(y) = \alpha$ and so $x \notin F$ and $y \notin F$. Since F is prime, $x \lor y \notin F$ and so $F_{\alpha}^{1}(x \lor y) = \alpha$. Now, $(\nu \cap \theta)(x \lor y) = \nu(x \lor y) \land \theta(x \lor y) \ge \nu(x) \land \theta(y) > \alpha \land \alpha = \alpha =$ $F_{\alpha}^{1}(x \lor y)$, which is a contradiction to our assumption $\nu \cap \theta \subseteq F_{\alpha}^{1}$. Hence F_{α}^{1} is a prime *e*-fuzzy filter. Conversely, suppose that F_{α}^{1} is a prime *e*fuzzy filter. Clearly F_{α}^{1} is an *e*-fuzzy filter and $(F_{\alpha}^{1})_{1} = F$. Hence F is an *e*-filter of L. Let A and B be any filters of L such that $A \cap B \subseteq F$. Then $(A \cap B)_{\alpha}^{1} = A_{\alpha}^{1} \cap B_{\alpha}^{1} \subseteq F_{\alpha}^{1}$. Since F_{α}^{1} is prime, $A_{\alpha}^{1} \subseteq F_{\alpha}^{1}$ or $A_{\alpha}^{1} \subseteq F_{\alpha}^{1}$. This implies $B \subseteq F$ or $A \subseteq F$. Hence F is a prime *e*-filter of L. \Box

EXAMPLE 4.3. Let us consider an MS-algebra L described in the diagram 2

In diagram 2, $A = \{1\}$, $B = \{1, e\}$, $C = \{1, e, c\}$, $D = \{1, e, d\}$, $E = \{1, e, d, c, b\}$, $F = \{1, e, d, c, b, a\}$ are filters of L and all except B are prime filters of L and also A, C and F are prime e-filters of L.

In addition to this, it can be easily verified that $A^1_{\alpha}, C^1_{\alpha}$, and F^1_{α} are prime *e*-fuzzy filters of *L*.

COROLLARY 4.4. A proper e-filter F of L is a prime if and only if χ_F is a prime e-fuzzy filter of L.

THEOREM 4.5. A proper e-fuzzy filter μ of L is a prime e-fuzzy filter if and only if $Img(\mu) = \{1, \alpha\}$, where $\alpha \in [0, 1)$ and the set $\mu_* = \{x \in L : \mu(x) = 1\}$ is a prime e-filter of L.

Proof. The converse part of this theorem follows from Lemma 4.2. Suppose that μ is a prime *e*-fuzzy filter. Clearly $1 \in Im(\mu)$ and since μ is proper, there is $x \in L$ such that $\mu(x) < 1$. We prove that $\mu(x) = \mu(y)$ for all $x, y \in L - \mu_*$. Suppose that $\mu(x) \neq \mu(y)$ for some $x, y \in L - \mu_*$. Without loss of generality we can assume that $\mu(y) < \mu(x) < 1$. Define fuzzy subsets θ and λ as follows:

$$\theta(z) = \begin{cases} 1 & \text{if } z \in [x) \\ 0 & \text{otherwise.} \end{cases}$$

and

$$\lambda(z) = \begin{cases} 1 & \text{if } z \in \mu_* \\ \mu(x) & \text{otherwise.} \end{cases}$$

for all $z \in L$. Then it can be easily verified that both θ and λ are fuzzy filters of L. Let $z \in L$. If $z \in \mu_*$, then $(\theta \cap \lambda)(z) \leq 1 = \mu(z)$. If $z \in [x) - \mu_*$, then $z = x \lor z$, and we have $(\theta \cap \lambda)(z) = \theta(z) \land \lambda(z) = 1 \land \mu(x) = \mu(x) \leq \mu(z)$.

Also if $z \notin [x)$, then $\theta(z) = 0$, so that $(\theta \cap \lambda)(z) = 0 \le \mu(z)$. Therefore for all $x \in L$, $(\theta \cap \lambda)(x) \subseteq \mu(x)$. But we have $\theta(x) = 1 > \mu(x)$ and $\lambda(y) = \mu(x) > \mu(y)$. This implies $\lambda \nsubseteq \mu$ and $\theta \nsubseteq \lambda$, which is a contradiction. Thus $\mu(x) = \mu(y)$ for all $x, y \in L - \mu_*$ and hence $Im(\mu) = \{1, \alpha\}$ for some $\alpha \in [0, 1)$. Let $P = \{x \in L : \mu(x) = 1\}$. Since μ is proper, we get that P is a proper *e*-filter of L such that

$$\mu(z) = \begin{cases} 1 & \text{if } z \in P \\ \alpha & \text{if } z \notin P. \end{cases}$$

for $\alpha \neq 1$. Hence by Lemma 4.2, $P = \mu_*$.

THEOREM 4.6. If μ is a prime *e*-filter of *L*, then $\mu(x \lor y) = \mu(x)$ or $\mu(x \lor y) = \mu(y)$ for all $x, y \in L$.

Proof. Suppose that μ is a prime *e*-filter of *L*, then there exists a prime *e*-filter *F* of *L* and $\alpha \in [0, 1)$ such that

$$\mu(x) = \begin{cases} 1 & \text{if } x \in F \\ \alpha & \text{if } x \notin F \end{cases}$$

for all $x \in L$. If $x, y \in F$, then $x \vee y \in F$ and so $1 = \mu(x) = \mu(y) = \mu(x \vee y)$. If $x \in F$ and $y \notin F$, then $x \vee y \in F$ and so $1 = \mu(x) = \mu(x \vee y)$. If $x \notin F$ and $y \notin F$, then $x \vee y \notin F$ and so $\alpha = \mu(x) = \mu(y) = \mu(x \vee y)$. Hence the Theorem holds.

DEFINITION 4.7. A proper fuzzy filter μ in MS-algebra L is called a maximal fuzzy filter if $Img(\mu) = \{1, \alpha\}$, where $\alpha \in [0, 1)$. and the set μ_* is a maximal filter of L.

DEFINITION 4.8. A proper e-fuzzy filter μ in MS-algebra L is called a maximal e-fuzzy filter if $Img(\mu) = \{1, \alpha\}$, where $\alpha \in [0, 1)$. and the set μ_* is a maximal e-filter of L.

COROLLARY 4.9. Any maximal e-fuzzy filter of L is a prime e-fuzzy filter.

Proof. Let μ be a maximal e-fuzzy filter of L. Then $Im\mu = \{1, \alpha\}$, and μ_* is a maximal e-filter of L. Since every maximal e-filter of L is a prime e-filter of L. This implies μ_* is a prime e-filter of L. Hence μ is a prime e-filter of L. But the converse is not true, since in the Example 4.3, A^1_{α} , C^1_{α} are prime e-fuzzy filters of L but not maximal e-fuzzy filters of L.

THEOREM 4.10. Every maximal fuzzy filter of an MS-algebra is an *e*-fuzzy filter.

COROLLARY 4.11. Every maximal fuzzy filter of an MS-algebra is prime *e*-fuzzy filter.

THEOREM 4.12. If μ is minimal in the class of all prime fuzzy filters L containing a given e-fuzzy filter, then μ is an e-fuzzy filter of L.

Proof. Suppose that μ is minimal in the class of all prime fuzzy filters containing an *e*-fuzzy filter θ of *L*. We prove that μ is an *e*-fuzzy filter. Since μ is a prime fuzzy filter of *L*, there exists a prime filter *P* of *L* such

$$\mu(z) = \begin{cases} 1 & \text{if } z \in P \\ \alpha & \text{otherwise.} \end{cases}$$

for some $\alpha \in [0, 1)$. Suppose that μ is not an *e*-fuzzy filter of *L*, then there exist $x, y \in L, x^{\circ} = y^{\circ}$ such that $\mu(x) \neq \mu(y)$. Without loss of

generality, assume $\mu(x) = 1$ and $\mu(y) = \alpha$. Consider a fuzzy ideal ϕ of L defined by

$$\phi(z) = \begin{cases} 1 & \text{if } z \in (L-P) \lor (x \lor y] \\ \alpha & \text{otherwise.} \end{cases}$$

Then $\theta \cap \phi \leq \alpha$. Otherwise there exists $a \in L$ such that $\phi(a) = 1$ and $\theta(a) > \alpha$. This implies $a \in (L - P) \lor (x \lor y]$.

$$\implies a = r \lor s \text{ for some } r \in L - P \text{ and } s \in (x \lor y]$$
$$\implies a = r \lor s = r \lor (s \land (x \lor y)) = (r \lor s) \land (r \lor x \lor y) \le r \lor x \lor y$$

As $x^{\circ} = y^{\circ}$ implies $(r \lor x \lor y)^{\circ} = (r \lor y)^{\circ}$. Since θ is an *e*-fuzzy filter of $L, \alpha < \theta(a) = \theta(r \lor s) \le \theta(r \lor x \lor y) = \theta(r \lor y) \le \mu(r \lor y)$. This implies $1 = \mu(r \lor y)$.

Hence $\mu(y) = 1$ or $\mu(r) = 1$, which is a contradiction. Thus $\theta \cap \phi \leq \alpha$.

This implies there exists a prime fuzzy filter η such that $\eta \cap \phi \leq \alpha$ and $\theta \subseteq \eta$. Clearly $x \lor y \in (L - P) \lor (x \lor y]$. This implies $\phi(x \lor y) = 1$. Since $\phi \cap \eta \leq \alpha$, $\eta(x \lor y) \leq \alpha < \mu(x \lor y) = 1$. This implies $\mu \not\subseteq \eta$. This indicates μ is not minimal in the class of all prime fuzzy filters containing a given *e*-fuzzy filter, which is a contradiction. Therefore, μ is an *e*-fuzzy filter.

THEOREM 4.13. Let L be an Ms-algebra. Then the following conditions are equivalent.

- (1) L is a de Morgan algebra,
- (2) For all $x, y \in L$, $x^{\circ} = y^{\circ}$ implies x = y,
- (3) Every fuzzy filter is an *e*-fuzzy filter,
- (4) Every prime fuzzy filter is an *e*-fuzzy filter.

Proof. The proof of $(1) \Rightarrow (2)$, $(2) \Rightarrow (3)$, and $(3) \Rightarrow (4)$ are straightforward. Now prove that $(4) \Rightarrow (1)$. Suppose that $x \neq x^{\circ\circ}$ for $x \in L$. ThIs implies $x < x^{\circ\circ}$. We have $(x] \cap [x^{\circ\circ}) = \emptyset$. We know that $\chi_{(x]}$ and $\chi_{[x^{\circ\circ})}$ are fuzzy ideal and fuzzy filter of L respectively such that $\chi_{(x]} \cap \chi_{[x^{\circ\circ})} = \chi_{\emptyset}$ (the constant fuzzy subset attaining, value 0), there exists a prime fuzzy filter θ of L such that $\chi_{[x^{\circ\circ})} \subseteq \theta$ and $\chi_{(x]} \cap \theta = \chi_{\emptyset}$. Since $\chi_{[x^{\circ\circ})} \subseteq \theta$, we get $\theta(x) = 1$. Also $\chi_{(x]}(x) \wedge \theta(x) = 0$. This implies $\theta(x) = 0$, which is a contradiction θ is an *e*-filter. Hence $x = x^{\circ\circ}$ and so L is a de Morgan algebra. \Box 1172

THEOREM 4.14. Let μ be a prime fuzzy filter of an MS-algebra L, and $\mu(0) = 0$. Then a fuzzy subset $\ell(\mu)$ of L defined as $\ell(\mu)(x) = \mu'(x^\circ) \ \forall x \in L$ is an e-fuzzy filter of L.

Proof.
$$\ell(\mu)(1) = \mu'(1^\circ) = 1 - \mu(1^\circ) = 1 - \mu(0) = 1.$$

 $\ell(\mu)(x \wedge y) = \mu'((x \wedge y)^\circ) = 1 - \mu(x^\circ \vee y^\circ)$
 $= (1 - \mu(x^\circ)) \wedge (1 - \mu(y^\circ))$
 $= \mu'(x^\circ) \wedge \mu'(y^\circ) = \ell(\mu)(x) \wedge \ell(\mu)(y)$

This implies $\ell(\mu)$ is a fuzzy filter of L. Next we prove that $\ell(\mu)$ is an *e*-fuzzy filter. Since $x \leq x^{\circ\circ}, x^{\circ\circ} = x \vee x^{\circ\circ}$,

$$\ell(\mu)(x^{\circ\circ}) = \ell(\mu)(x \vee x^{\circ\circ}) = \mu'((x \vee x^{\circ\circ})^{\circ}) = \mu'(x^{\circ} \wedge x^{\circ\circ\circ}) = \mu'(x^{\circ}) = \ell(\mu)(x).$$

This implies $\ell(\mu)$ is an *e*-fuzzy filter of *L* by Theorem 3.9

COROLLARY 4.15. Let μ be a maximal fuzzy filter of an MS-algebra L and $\mu(0) = 0$. Then $\ell(\mu)$ is an *e*-fuzzy filter of L.

5. The space of prime *e*-fuzzy filters

In this section, we discuss some properties of prime e-fuzzy filters of an MS-algebra and topological properties of the collection of all prime e-fuzzy filters of an MS-algebra.

THEOREM 5.1. Let $\alpha \in [0, 1)$, μ be an *e*-fuzzy filter and σ be a fuzzy ideal of an MS-algebra *L* such that $\mu \cap \sigma \leq \alpha$. Then there exists a prime *e*-fuzzy filter β such that $\mu \subseteq \beta$ and $\beta \cap \sigma \leq \alpha$.

Proof. Put $\xi = \{\theta \in \mathcal{FF}^e(L) : \mu \subseteq \theta \text{ and } \theta \cap \sigma \leq \alpha\}$. Clearly (ξ, \subseteq) is a poset. Let $Q = \{\mu_i : i \in \Omega\}$ be a chain in ξ . We prove that $\bigcup_{i \in \Omega} \mu_i \in \xi$. Clearly $(\bigcup_{i \in \Omega} \mu_i)(1) = 1$. For any $x, y \in L$,

$$\begin{aligned} (\cup_{i\in\Omega}\mu_i)(x)\wedge(\cup_{i\in\Omega}\mu_i)(y) &= \sup\{\mu_i(x):i\in\Omega\}\wedge\sup\{\mu_j(y):j\in\Omega\}\\ &= \sup\{\mu_i(x)\wedge\mu_j(y):i,j\in\Omega\}\\ &\leq \sup\{(\mu_i\cup\mu_j)(x)\wedge(\mu_i\cup\mu_j)(y):i,j\in\Omega\}\end{aligned}$$

Since Q is a chain, $\mu_i \subseteq \mu_j$ or $\mu_j \subseteq \mu_i$. Without loss of generality, assume $\mu_j \subseteq \mu_i$. This implies $\mu_i \cup \mu_j = \mu_i$. This shows,

$$(\cup_{i\in\Omega}\mu_i)(x) \wedge (\cup_{i\in\Omega}\mu_i)(y) \leq \sup\{\mu_i(x) \wedge \mu_i(y), i\in\Omega\}$$

=
$$\sup\{\mu_i(x \wedge y), i\in\Omega\}$$

=
$$(\cup_{i\in\Omega}\mu_i)(x \wedge y)$$

Again $(\bigcup_{i\in\Omega}\mu_i)(x) = \sup\{\mu_i(x) : i\in\Omega\} \le \sup\{\mu_i(x\vee y) : i\in\Omega\} = (\bigcup_{i\in\Omega}\mu_i)(x\vee y)$. Similarly $(\bigcup_{i\in\Omega}\mu_i)(y) \le (\bigcup_{i\in\Omega}\mu_i)(x\vee y)$. This implies $(\bigcup_{i\in\Omega}\mu_i)(x)\vee (\bigcup_{i\in\Omega}\mu_i)(y) \le (\bigcup_{i\in\Omega}\mu_i)(x\vee y)$. Hence $\bigcup_{i\in\Omega}\mu_i$ is a fuzzy filter of L. Now prove that $(\bigcup_{i\in\Omega}\mu_i)$ is e-fuzzy filter.

$$(\bigcup_{i\in\Omega}\mu_i)^e(x) = \sup\{(\bigcup_{i\in\Omega}\mu_i)(a) : x^\circ \le a^\circ, a \in L\}$$

=
$$\sup\{\sup\{\sup\{\mu_i(a) : i \in \Omega\} : x^\circ \le a^\circ, a \in L\}$$

=
$$\sup\{\sup\{\mu_i(a) : x^\circ \le a^\circ, a \in L\} : i \in \Omega\}$$

=
$$\sup\{\mu_i^e(x), i \in \Omega\} = \sup\{\mu_i(x), i \in \Omega\}$$

=
$$(\bigcup_{i\in\Omega}\mu_i)(x)$$

Thus $\bigcup_{i\in\Omega}\mu_i$ is an *e*-fuzzy filter of *L*. Since $\mu_i \cap \sigma \leq \alpha$ for each $i \in \Omega$,

$$((\cup_{i\in\Omega}\mu_i)\cap\sigma)(x) = (\cup_{i\in\Omega}\mu_i)(x)\wedge\sigma(x)$$

= $\sup\{\mu_i(x), i\in\Omega\}\wedge\sigma(x)$
= $\sup\{\mu_i(x)\wedge\sigma(x), i\in\Omega\}$
= $\sup\{(\mu_i\cap\sigma)(x), i\in\Omega\}\leq\alpha$

Thus $(\bigcup_{i\in\Omega}\mu_i)\cap\theta) \leq \alpha$. Hence $\bigcup_{i\in\Omega}\mu_i \in \xi$. By applying Zorn's Lemma, ξ has a maximal element, say δ , i.e, δ is an *e*-fuzzy filter of L such that $\mu \subseteq \delta$ and $\delta \cap \sigma \leq \alpha$. Next we show that δ is a prime *e*-fuzzy filter of L. Assume that δ is not a prime *e*-fuzzy filter. Let λ_1 , $\lambda_2 \in FF(L)$, and $\lambda_1 \cap \lambda_2 \subseteq \delta$ such that $\lambda_1 \not\subseteq \delta$ and $\lambda_2 \not\subseteq \delta$. If we put $\delta_1 = (\lambda_1 \vee \delta)^e$ and $\delta_2 = (\lambda_2 \vee \delta)^e$, then both δ_1, δ_2 are *e*-fuzzy filters of L properly containing δ . Since δ is a maximal in ξ , we have $\delta_1, \delta_2 \notin \xi$. Thus we show that $\delta_1 \cap \sigma \nleq \alpha$ and $\delta_2 \cap \sigma \nleq \alpha$. This implies there exist $x, y \in L$ such that $(\delta_1 \cap \sigma)(x) > \alpha$ and $(\delta_2 \cap \sigma)(y) > \alpha$.

Now we have,

$$\begin{array}{rcl} \alpha &< (\delta_1 \cap \sigma)(x) \wedge (\delta_2 \cap \sigma)(y) \\ &= \delta_1(x) \wedge \delta_2(y) \wedge \sigma(x) \wedge \sigma(y) \\ &\leq \delta_1(x \lor y) \wedge \delta_2(x \lor y) \wedge \sigma(x \lor y) \\ &= (\delta_1 \cap \sigma)(x \lor y) \wedge (\delta_2 \cap \sigma)(x \lor y) \\ &= (((\delta_1 \cap \sigma) \cap (\delta_2 \cap \sigma))(x \lor y) \\ &= (((\delta_2 \cap \delta_2) \cap \sigma)(x \lor y) \\ &= (((\lambda_1 \lor \delta)^e \cap (\lambda_2 \lor \delta)^e) \cap \sigma)(x \lor y) \\ &= ((\lambda_1 \cap \lambda_2) \lor \delta)^e \cap \sigma)(x \lor y) \\ &= (\delta^e \cap \sigma)(x \lor y) \\ &= (\delta \cap \sigma)(x \lor y). \end{array}$$

Which is a contradiction $\delta \cap \sigma \leq \alpha$. This implies δ is a prime *e*-fuzzy filter of *L*.

COROLLARY 5.2. Let μ be an *e*-fuzzy filter and σ be a fuzzy ideal of an MS-algebra *L* such that $\mu \cap \sigma = 0$. Then there exists a prime *e*-fuzzy filter β such that $\mu \subseteq \beta$ and $\beta \cap \sigma = 0$.

COROLLARY 5.3. Let $\alpha \in [0,1)$, μ be an e-fuzzy filter of an MSalgebra L and $\mu(x) \leq \alpha$. Then there exists a prime e-fuzzy filter θ of L such that $\mu \subseteq \theta$ and $\theta(x) \leq \alpha$.

Proof. Put $\xi = \{\theta \in \mathcal{FF}^e(L) : \mu \subseteq \theta \text{ and } \theta(x) \leq \alpha\}$. Clearly (ξ, \subseteq) is a poset. Let $Q = \{\mu_i : i \in \Omega\}$ be a chain in ξ . We prove that $\bigcup_{i \in \Omega} \mu_i \in \xi$. By Theorem 5.1, $(\bigcup_{i \in \Omega} \mu_i)$ is an *e*-fuzzy filter of *L*. Since $\mu_i \subseteq \theta$ for each $i \in \Omega$ and $\theta(x) \leq \alpha$, $(\bigcup_{i \in \Omega} \mu_i)(x) = \sup\{\mu_i(x), i \in \Omega\} \leq \theta(x) \leq \alpha$. Hence $\bigcup_{i \in \Omega} \mu_i \in \xi$. By applying Zorn's Lemma, ξ has a maximal element, say δ , i.e, δ is an *e*-fuzzy filter of *L* such that $\mu \subseteq \delta$ and $\delta(x) \leq \alpha$. Next

say δ , i.e., δ is an *e*-fuzzy filter of *L* such that $\mu \subseteq \delta$ and $\delta(x) \leq \alpha$. Next we show that δ is a prime *e*-fuzzy filter of *L*. Assume that δ is not a prime *e*-fuzzy filter. Let λ_1 , $\lambda_2 \in FF(L)$, and $\lambda_1 \cap \lambda_2 \subseteq \delta$ such that $\lambda_1 \not\subseteq \delta$ and $\lambda_2 \not\subseteq \delta$. If we put $\delta_1 = (\lambda_1 \lor \delta)^e$ and $\delta_2 = (\lambda_2 \lor \delta)^e$, then both δ_1, δ_2 are *e*-fuzzy filters of *L* properly containing δ . Since δ is a maximal in ξ , we get $\delta_1, \delta_2 \notin \xi$. This implies $\delta_1(x) > \alpha$ and $\delta_2(x) > \alpha$. We have

$$\delta_1(x) \wedge \delta_2(x) \ge (\delta_1 \cap \delta_2)(x) > \alpha. \text{ Which implies}$$

$$\alpha \le \delta_1(x) \wedge \delta_2(x)$$

$$= ((\lambda_1 \vee \delta)^e \cap (\lambda_2 \vee \delta)^e)(x)$$

$$= ((\lambda_1 \cap \lambda_2) \vee \delta)^e(x)$$

$$= \delta^e(x), \text{ becouse } \lambda_1 \subseteq \delta \text{ and } \lambda_2 \subseteq \delta$$

$$= \delta(x).$$

Which is a contradiction $\delta(x) \leq \alpha$. Thus δ is a prime *e*-fuzzy filter of L.

COROLLARY 5.4. For any e-fuzzy filter μ of an MS-algebra L, we have $\mu = \bigcap \{ \sigma : \sigma \text{ is a prime } e\text{-fuzzy filter of } L, \mu \subseteq \sigma \}.$

Proof. Let μ be any *e*-fuzzy filter of *L*. Put $\eta = \bigcap \{\theta : \theta \text{ is a prime } e$ -fuzzy filter such that $\mu \subseteq \theta \}$. Now, we prove that $\mu = \eta$. Clearly $\mu \subseteq \eta$. Suppose that $\eta(a) > \mu(a)$ for some $a \in L$. Put $\alpha = \mu(a)$. This implies $\mu \subseteq \mu$ and $\mu(a) \leq \alpha$. Thus by the Corollary 5.3, there exists a prime *e*-fuzzy filter δ such that $\mu \subseteq \delta$ and $\delta(a) \leq \alpha$. Since $\eta \subseteq \delta$, $\eta(a) \leq \alpha$. Which is a contradiction for $\eta(a) > \alpha$. Hence $\eta \subseteq \mu$. Hence $\mu = \eta$. This implies every proper *e*-fuzzy filter of *L* is the intersection of all prime *e*-fuzzy filters containing it.

COROLLARY 5.5. Let L be an MS-algebra. Then the intersection of all prime e-fuzzy filters of L is equal to χ_D .

Let *L* be an MS-algebra and X^e denotes the set of all prime *e*-fuzzy filters of *L*. For a fuzzy subset θ of *L*, define $H^e(\theta) = \{\mu \in X^e : \theta \subseteq \mu\}$, and $X^e(\theta) = \{\mu \in X^e : \theta \not\subseteq \mu\}$.

LEMMA 5.6. For any fuzzy filters λ and ν of L, we have

1. $\lambda \subseteq \nu \Rightarrow X^e(\lambda) \subseteq X^e(\nu),$ 2. $X^e(\lambda \lor \nu) = X^e(\lambda) \cup X^e(\nu),$ 3. $X^e(\lambda \cap \nu) = X^e(\lambda) \cap X^e(\nu)$

Proof. (1) Let $\mu \in X^e(\lambda)$. Then $\lambda \nsubseteq \mu$ and so $\nu \nsubseteq \mu$. Thus $\mu \in X^e(\nu)$. Hence $X^e(\lambda) \subseteq X^e(\nu)$.

(2) By (1) $X^e(\lambda) \subseteq X^e(\lambda \lor \nu)$ and $X^e(\nu) \subseteq X^e(\lambda \lor \nu)$. We have $X^e(\nu) \cup X^e(\lambda) \subseteq X^e(\lambda \lor \nu)$. Conversely, If $\mu \in X^e(\lambda \lor \nu)$, then $\lambda \lor \nu \nsubseteq \mu$. Since μ is a prime *e*-fuzzy filter, $\lambda \nsubseteq \mu$ or $\nu \nsubseteq \mu$, and so $\mu \in X^e(\lambda)$ or $\mu \in X^e(\nu)$. Hence $\mu \in X^e(\lambda) \cup X^e(\nu)$. Thus $X^e(\lambda \lor \nu) = X^e(\lambda) \cup X^e(\nu)$.

(3) Clearly $X^e(\lambda \cap \nu) \subseteq X^e(\lambda) \cap X^e(\nu)$. Again $\mu \in X^e(\lambda) \cap X^e(\nu)$, then $\lambda \nsubseteq \mu$ and $\nu \nsubseteq \mu$. Since μ is a prime *e*-fuzzy filter, we have $\lambda \cap \mu \nsubseteq \mu$. Thus $\mu \in X^e(\lambda \cap \nu)$ and so $X^e(\lambda) \cap X^e(\nu) \subseteq X^e(\lambda \cap \nu)$. Hence $X^e(\lambda) \cap X^e(\nu) = X^e(\lambda \cap \nu)$.

LEMMA 5.7. Let λ be a fuzzy subset of L. Then $X^{e}(\lambda) = X^{e}([\lambda))$.

Proof. Since $\lambda \subseteq [\lambda)$, $X^e(\lambda) \subseteq X^e([\lambda))$. Let $\mu \in X^e([\lambda))$, Then $[\lambda) \notin \mu$. This implies $\lambda \notin \mu$. Otherwise, if $\lambda \subseteq \mu$, then $[\lambda) \subseteq \mu$. Which is impossible. So that $\mu \in X^e(\lambda)$ and so $X^e(\lambda) = X^e([\lambda))$.

LEMMA 5.8. Let $x, y \in L$, and $\alpha \in (0, 1]$. Then

 $(1) \cup_{x \in L, \ \alpha \in (0,1]} X^e(x_\alpha) = X^e,$ $(2) \ X^e(x_\alpha) \cap X^e(y_\alpha) = X^e((x \lor y)_\alpha),$ $(3) \ X^e(x_\alpha) \cup X^e(y_\alpha) = X^e((x \land y)_\alpha),$ $(4) \ X^e(x_\alpha) = \emptyset \Leftrightarrow x \in D,$

Proof. (1) Clearly $\bigcup_{x \in L, \alpha \in (0,1]} X^e(x_\alpha) \subseteq X^e$. Let $\mu \in X^e$. Then $Im\mu = \{1, r\}, r \in [0, 1)$. This implies there is $x \in L$ such that $\mu(x) = r$. Let us take some $\alpha \in (0, 1]$ such that $\alpha > r$. This implies $\mu \in X^e(x_\alpha)$, and so $\mu \in \bigcup_{x \in L, \alpha \in (0,1]} X^e(x_\alpha)$. Thus $X^e \subseteq \bigcup_{x \in L, \alpha \in (0,1]} X^e(x_\alpha)$. Hence $X^e = \bigcup_{x \in L, \alpha \in (0,1]} X^e(x_\alpha)$.

(2) Let,

$$\mu \in X^{e}(x_{\alpha}) \cap X^{e}(y_{\alpha}) \implies \mu \in X^{e}(x_{\alpha}) \text{ and } \mu \in X^{e}(y_{\alpha})$$

$$\Rightarrow x_{\alpha} \nsubseteq \mu \text{ and } y_{\alpha} \nsubseteq \mu$$

$$\Rightarrow \alpha > \mu(x) \text{ and } \alpha > \mu(y)$$

$$\Rightarrow \alpha > \mu(x) \lor \mu(y) = \mu(x \lor y)$$

$$\Rightarrow (x \lor y)_{\alpha} \nsubseteq \mu$$

$$\Rightarrow \mu \in X^{e}((x \lor y)_{\alpha}$$

$$\Rightarrow X^{e}(x_{\alpha}) \cap X^{e}(y_{\alpha}) \subseteq X^{e}(((x \lor y)_{\alpha}))$$

e-Fuzzy filters of MS-algebras

Conversely, let

$$\mu \in X^{e}((x \lor y)_{\alpha}) \implies (x \lor y)_{\alpha} \nsubseteq \mu$$

$$\Rightarrow \alpha > \mu(x \lor y) = \mu(x) \lor \mu(y) \text{ as } \mu \text{ is prime}$$

$$\Rightarrow \alpha > \mu(x) \text{ and } \alpha > \mu(y)$$

$$\Rightarrow x_{\alpha} \nsubseteq \mu \text{ and } y_{\alpha} \nsubseteq \mu$$

$$\Rightarrow \mu \in X^{e}(x_{\alpha}) \text{ and } \mu \in X^{e}(y_{\alpha})$$

$$\Rightarrow \mu \in X^{e}(x_{\alpha}) \cap X^{e}(y_{\alpha})$$

$$\Rightarrow X^{e}((x \lor y)_{\alpha}) \subseteq X^{e}(x_{\alpha}) \cap X^{e}(y_{\alpha})$$

Hence $X^e(x_\alpha) \cap X^e(y_\alpha) = X^e((x \lor y)_\alpha).$

(3) The prove is similar to (2).

(4)

$$X^{e}(x_{\alpha}) = \emptyset \iff x_{\alpha} \subseteq \mu \ \forall \ \mu \in X^{e}$$
$$\Leftrightarrow x_{\alpha} \subseteq \cap_{\mu \in X^{e}} \mu = \chi_{D}$$
$$\Leftrightarrow \chi_{D}(x) = 1$$
$$\Leftrightarrow x \in D.$$

LEMMA 5.9. Let $\alpha_1, \alpha_2 \in (0, 1]$, $\alpha = \min\{\alpha_1, \alpha_2\}$ and any $x, y \in L$. Then $X^e(x_{\alpha_1}) \cap X^e(y_{\alpha_2}) = X^e((x \lor y)_{\alpha})$.

Proof. Let $\mu \in X^e(x_{\alpha_1}) \cap X^e(y_{\alpha_2})$. Then $x_{\alpha_1} \nsubseteq \mu$ and $y_{\alpha_2} \nsubseteq \mu$. This implies $\alpha_1 > \mu(x)$ and $\alpha_2 > \mu(y)$. Since μ_* is a prime filter of L and $x, y \notin \mu_*$, we have $x \lor y \notin \mu_*$ and $\mu(x) = \mu(y) = \mu(x \lor y)$. This shows $\alpha = \alpha_1 \land \alpha_2 > \mu(x \lor y)$, Whence $(x \lor y)_{\alpha} \nsubseteq \mu$ and so $\mu \in X^e((x \lor y)_{\alpha})$. Thus $X^e(x_{\alpha_2}) \cap X^e(y_{\alpha_2}) \subseteq X^e((x \lor y)_{\alpha})$. Conversely, let $\mu \in X^e((x \lor y)_{\alpha})$. Then $(x \lor y)_{\alpha} \nsubseteq \mu$. This implies $\alpha > \mu(x \lor y) = \mu(x) \lor \mu(y)$. This show $\alpha_1 > \mu(x)$ and $\alpha_2 > \mu(y)$ and $x_{\alpha_2} \nsubseteq \mu$ and $y_{\alpha_2} \nsubseteq \mu$. Then we have $\mu \in X^e(x_{\alpha_2}) \cap X^e(y_{\alpha_2})$. Hence $X^e(x_{\alpha_2}) \cap X^e(y_{\alpha_2}) = X^e((x \lor y)_{\alpha})$. \Box

LEMMA 5.10. The collection $\mathcal{T} = \{X^e(\theta) : \theta \text{ is a fuzzy filter of } L\}$ is a topology on X^e .

Proof. Consider the fuzzy subsets λ_1, λ_2 of L defined as : $\lambda_1(x) = 0$ and $\lambda_2(x) = 1$ for all $x \in L$. Clearly $[\lambda_1)$ and λ_2 are fuzzy filters of L. $[\lambda_1) \subseteq \mu$ for all $\mu \in X^e$. Thus $X^e([\lambda_1)) = \emptyset$. Since each $\mu \in X^e$ is non-constant, $\lambda_2 \nsubseteq \mu$ for all $\mu \in X^e$. Thus $X^e(\lambda_2) = X^e$. This implies $\emptyset, X^e \in \mathcal{T}$. Also for any fuzzy filters λ_1 and λ_2 of L, by Lemma

5.6(3) we have $X^e(\lambda_1) \cap X^e(\lambda_2) = X^e(\lambda_1 \cap \lambda_2)$. This show that \mathcal{T} is closed under finite intersections. Next, let $\{\lambda_i, i \in \Omega\}$ be any family of fuzzy filters of L. Now we prove that $\bigcup_{i \in \Omega} X^e(\lambda_i) = X^e([\bigcup_{i \in \Omega} \lambda_i))$. Let $\mu \in X^e([\bigcup_{i \in \Omega} \lambda_i))$, then $[\bigcup_{i \in \Omega} \lambda_i) \notin \mu$, which implies that $\lambda_i \notin \mu$ for some $i \in \Omega$. Otherwise if $\lambda_i \subseteq \mu$ for each $i \in \Omega$, it will be true that $[\bigcup_{i \in \Omega} \lambda_i) \subseteq \mu$. Thus $\mu \in \bigcup_{i \in \Omega} X^e(\lambda_i)$ Whence $X^e([\bigcup_{i \in \Omega} \lambda_i)) \subseteq$ $\bigcup_{i \in \Omega} X^e(\lambda_i)$. Clearly $\bigcup_{i \in \Omega} X^e(\lambda_i) \subseteq X^e([\bigcup_{i \in \Omega} \lambda_i))$. Hence $\bigcup_{i \in \Omega} X^e(\lambda_i) =$ $X^e([\bigcup_{i \in \Omega} \lambda_i))$. Therefore, \mathcal{T} is closed under arbitrary unions and hence, it is Topology on X^e .

DEFINITION 5.11. The topological space (X^e, \mathcal{T}) is called the prime *e*-fuzzy filter Spectrum of *L* and it is denoted by $F - Spac_F^e(L)$.

THEOREM 5.12. Let $\mathcal{B} = \{X^e(x_\alpha) : x \in L, \alpha \in (0, 1]\}$. Then \mathcal{B} forms a base for some topology on τ .

Proof. Clearly by (1) and (2) from Lemma 5.8, it follow that \mathcal{B} forms a base for some topology on X^e .

THEOREM 5.13. The space X^e is a T_0 -space.

Proof. Let $\mu, \theta \in X^e$ such that $\mu \neq \theta$. Then either $\mu \nsubseteq \theta$ or $\theta \nsubseteq \mu$. Without loss of generality, we can assume that $\mu \nsubseteq \theta$. Then $\theta \in X^e(\mu)$ and $\mu \notin X^e(\mu)$. Thus X^e is a T_0 -space.

THEOREM 5.14. For any fuzzy filter μ of L, $X^e(\mu) = X^e(\mu^e)$.

Proof. Clearly $\mu \subseteq \mu^e$ for any fuzzy filter μ of L. Then $X^e(\mu) \subseteq X^e(\mu^e)$. Conversely, let $\theta \in X^e(\mu^e)$. Then $\mu^e \nsubseteq \theta$. Suppose $\theta \notin X^e(\mu)$, then $\mu \subseteq \theta$. This implies $\mu^e \subseteq \theta^e = \theta$. Which is impossible. Thus $\theta \in X^e(\mu)$ and so $X^e(\mu^e) \subseteq X^e(\mu)$. Hence $X^e(\mu) = X^e(\mu^e)$.

THEOREM 5.15. For any fuzzy filter μ of L, $X^e(\mu) = \bigcup_{x_\alpha \in \mu} X^e(x_\alpha)$.

THEOREM 5.16. The lattice $\mathcal{FF}^{e}(L)$ is isomorphic with the lattice of all open sets X^{e} .

Proof. The lattice of all open sets in X^e is $(\mathcal{T}, \cap, \cup)$. Define the mapping $f : \mathcal{FF}^e(L) \longrightarrow \mathcal{T}$ by $f(\mu) = X^e(\mu)$ for all $\mu \in \mathcal{FF}^e(L)$. Let $\mu, \theta \in F^eF(L)$. Then $f(\mu \sqcup \theta) = f((\mu \lor \theta)^e) = X^e(\mu \lor \theta) =$ $X^e(\mu) \cup X^e(\theta) = f(\mu) \cup f(\theta)$, and $f(\mu \cap \theta) = X^e(\mu \cap \theta) = X^e(\mu) \cap X^e(\theta) =$ $f(\mu) \cap f(\theta)$. This shows f is homomorphism. Since $X^e(\mu) = X^e(\mu^e)$ and $\mu^e \in \mathcal{FF}^e(L), \forall X^e(\mu) \in T$, there exists $\mu^e \in \mathcal{FF}^e(L)$ such that $f(\mu^e) = X^e(\mu)$. Hence f is onto. Next we prove that f is one to one.

Let $f(\mu) = f(\theta)$. Suppose that $\mu \neq \theta$, then there exists $x \in L$ such that either $\mu(x) < \theta(x)$ or $\theta(x) < \mu(x)$. Without loss of generality, we can assume that $\mu(x) < \theta(x)$. Put $\theta(x) = \alpha$, then by Corollary 5.3, we can find a prime *e*-fuzzy filter δ of L such that $\mu \subseteq \delta$ and $\delta(x) < \alpha$. This implies $\delta \notin X^e(\mu)$ and $\theta \not\subseteq \delta$. This show that $\delta \notin X^e(\mu)$ and $\delta \in X^e(\theta)$. This is a contradiction $f(\mu) = f(\theta)$. Thus $\mu = \theta$. Hence f is an isomorphism.

For any fuzzy subset θ of L, $X^e(\theta) = \{\mu \in X^e : \mu \notin \theta\}$ is open set of X^e and $H^e(\theta) = X^e - X^e(\theta)$ is a closed set of X^e . Also every closed set in X^e is the form of $H^e(\theta)$ for all fuzzy subset of L. Then we have the following:

THEOREM 5.17. The closure of any $A \subseteq X^e$ is given by $\overline{A} = H^e(\cap_{\mu \in A} \mu)$.

Proof. Let $A \subseteq X^e$ and $\beta \in A$. Then $\cap_{\mu \in A} \mu \subseteq \beta$. Thus $\beta \in H^e(\beta) \subseteq H^e(\cap_{\mu \in A} \mu)$. Therefore, $H^e(\cap_{\mu \in A} \mu)$ is a closed set containing A. Let C be any closed set containing A in X^e . Then $C = H^e(\theta)$ for some fuzzy subset of θ of L. Since $A \subseteq C = H^e(\theta)$, we have $\theta \subseteq \mu$ for all $\mu \in A$. Hence $\theta \subseteq \cap_{\mu \in A} \mu$. Therefore, $H^e(\cap_{\mu \in A} \mu) \subseteq H^e(\theta) = C$. Hence $H^e(\cap_{\mu \in A} \mu)$ is the smallest closed set containing A. Therefore, $\overline{A} = H^e(\cap_{\mu \in A} \mu)$.

References

- [1] T. S. Blyth and J. C. Varlet, *Ockham Algebras*, Oxford University Press, (1994).
- [2] T. S. Blyth and J. C. Varlet, On a common abstraction of de Morgan and Stone algebras, Proc Roy Soc Edinburgh, Sect A, 1983, 94A: 301–308.
- [3] T. S. Blyth and J. C. Varlet, Subvarieties of the class of MS-algebras, Proc Roy Soc Edinburgh, Sect A, (1983), 95A: 157–169.
- [4] H. Hadji-Abadi and M.M. Zahedi, Some results on fuzzy prime spectrum of a ring, Fuzzy sets and systems 77 (1996), 235–240.
- [5] R. Kumar, Fuzzy prime spectrum of a ring, Fuzzy sets and systems 46 (1992), 147–154.
- [6] R. Kumar, Spectrum prime fuzzy ideals, Fuzzy sets and systems 62 (1994), 101– 109.
- [7] A. Rosenfeld, Fuzzy groups, Math. Anal. Appl. 35 (1971), 512–517.
- [8] M. Sambasiva Roa, *e-filters of MS-algebras*, Acta Mathematica Scientia (33B(3)) (2014), 738–746.
- U. M. Swamy and D. V. Raju, *Fuzzy ideals and congruences of lattices*, Fuzzy sets and systems 95 (1998), 249–253.
- [10] Bo. Yuan and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990), 231–240.

[11] L. A. Zadeh, *Fuzzy sets*, Inform. and Control 8 (1965), 338–353.

Berhanu Assaye Alaba

Departement of Mathematics Bahir Dar university Bahir Dar, Ethiopia *E-mail*: berhanu_assaye@yahoo.com

Teferi Getachew Alemayehu

Departement of Mathematics Debre Berhan University Debre Berhan , Ethiopia *E-mail*: teferigetachew3@gmail.com