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SHARPENED FORMS OF ANALYTIC FUNCTIONS

CONCERNED WITH HANKEL DETERMINANT

Bülent Nafi Örnek

Abstract. In this paper, we present a Schwarz lemma at the bound-
ary for analytic functions at the unit disc, which generalizes classical
Schwarz lemma for bounded analytic functions. For new inequali-
ties, the results of Jack’s lemma and Hankel determinant were used.
We will get a sharp upper bound for Hankel determinant H2(1).
Also, in a class of analytic functions on the unit disc, assuming the
existence of angular limit on the boundary point, the estimations
below of the modulus of angular derivative have been obtained.

1. Introduction

The most classical version of the Schwarz Lemma examines the be-
havior of a bounded, analytic function mapping the origin to the origin
in the unit disc E = {z : |z| < 1}. It is possible to see its effectiveness
in the proofs of many important theorems. The Schwarz Lemma, which
has broad applications and is the direct application of the maximum
modulus principle, is given in the most basic form as follows:

Let E be the unit disc in the complex plane C. Let f : E → E be
an analytic function with f(0) = 0. Under these conditions, |f(z)| ≤
|z| for all z ∈ E and |f ′(0)| ≤ 1. In addition, if the equality |f(z)| = |z|
holds for any z 6= 0, or |f ′(0)| = 1, then f is a rotation; that is
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f(z) = zeiθ, θ real ( [5], p.329). Schwarz lemma has several applica-
tions in the field of electrical and electronics engineering. Use of positive
real function and boundary analysis of these functions for circuit synthe-
sis can be given as an exemplary application of the Schwarz lemma in
electrical engineering. Furthermore, it is also used for analysis of transfer
functions in control engineering and multi-notch filter design in signal
processing [12,13].

In order to derive our main results, we have to recall here the following
Jack’s Lemma [6].

Lemma 1.1. Let f(z) be a non-constant anaytic function in E with
f(0) = 0. If

|f(z0)| = max {|f(z)| : |z| ≤ |z0|} ,

then there exists a real number k ≥ 1 such that

z0f
′(z0)

f(z0)
= k.

Let A denote the class of functions f(z) = z + a2z
2 + a3z

3 + ... that
are analytic in E. Also, let M be the subclass of A consisting of all
functions f(z) satisfying

(1.1) <
(

2
zf ′(z)

f(z)
−
(

1 +
zf ′′(z)

f ′(z)

))
> 0.

In addition, classM represents the class of convex and starlike functions.
The certain analytic functions, which are in the class of M on the unit
disc E, are considered in this paper. The subject of the present paper
is to discuss some properties of the function f(z) which belongs to the
class of M by applying the Jack’s Lemma.

In this study, we will give the sharp estimates for the Hankel deter-
minant of the first order for the class of the analytic function f ∈ A
will satisfy the condition (1.1). In particular, the sharp upper bounds
on H2(1) will be obtained for the class M. In addition, the relation-
ship between the coeffcients of the Hankel determinant and the angular
derivative of the function f , which provides the class M, will be exam-
ined. In this analysis, the coefficients a2, a3 and a4 will be used. Let
f ∈ A. The qth Hankel determinant of f for n ≥ 0 and q ≥ 1 is stated
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by Noonan and Thomas [17] as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 an+2 ... an+q
...

...
...

...
an+q−1 an+q ... an+2q−2

∣∣∣∣∣∣∣∣ , a1 = 1.

From the Hankel determinant for n = 1 and q = 2, we have

H2(1) =

∣∣∣∣ a1 a2

a2 a3

∣∣∣∣ = a3 − a2
2.

Here, the Hankel determinant H2(1) = a3 − a2
2 is well-known as Fekete-

Szegö functional [16]. In [18], authors have obtained the upper bounds
of the Hankel determinant |a2a4 − a2

3|. We will get an upper bound for
H2(1) = a3 − a2

2 in our study.
Let f ∈M and consider the following function

Θ(z) =

(
z

f(z)

)2

f ′(z)− 1.

It is an analytic function in E and Θ(0) = 0. Now, let us show that
|Θ(z)| < 1 in E. From the definition for Θ(z), we have

2zf ′(z)

f(z)
−
(

1 +
zf ′′(z)

f ′(z)

)
= 1− zΘ′(z)

1 + Θ(z)
.

We suppose that there exists a z0 ∈ E such that

max
|z|≤|z0|

|Θ(z)| = |Θ(z0)| = 1.

From Jack’s lemma, we obtain

Θ(z0) = eiθ and
z0Θ′(z0)

Θ(z0)
= k.

Therefore, we have that

2z0f
′(z0)

f(z0)
−
(

1 +
z0f

′′(z0)

f ′(z0)

)
= 1− z0Θ′(z0)

1 + Θ(z0)
.

On the other hand whereas, we have

<
(

2z0f
′(z0)

f(z0)
−
(

1 +
z0f

′′(z0)

f ′(z0)

))
= <

(
1− keiθ

1 + eiθ

)
, k ≥ 2.
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Since

eiθ

1 + eiθ
=

1

1 + e−iθ
=

1

1 + cos θ − i sin θ
=

1 + cos θ + i sin θ

(1 + cos θ)2 + (sin θ)2

=
1 + cos θ + i sin θ

2 (1 + cos θ)

and

<
(

eiθ

1 + eiθ

)
=

1

2
,

we obtain

<
(

2z0f
′(z0)

f(z0)
−
(

1 +
z0f

′′(z0)

f ′(z0)

))
= 1− k

2
≤ 0, k ≥ 2.

This contradicts the fact f ∈ M. This means that there is no point
z0 ∈ E such that max

|z|≤|z0|
|Θ(z)| = |Θ(z0)| = 1. Hence, we take |Θ(z)| < 1

in E. From the Schwarz lemma, we obtain

Θ(z) =

(
z

f(z)

)2

f ′(z)− 1

=

(
z

z + a2z2 + a3z3 + ...

)2 (
1 + 2a2z + 3a3z

2 + ...
)
− 1

=
(
a3 − a2

2

)
z2 +

(
2a4 − 4a2a3 + 2a3

2

)
z3 + ...,

Θ(z)

z2
=
(
a3 − a2

2

)
+
(
2a4 − 4a2a3 + 2a3

2

)
z + ...

and
|H2(1)| =

∣∣a3 − a2
2

∣∣ ≤ 1.

The results is sharp for f=f1 ∈M, where

f1(z) =
z

1− z2
=
∞∑
n=1

z2n+1.

Indeed we have a2 = 0 and a3 = 1. So, we get |H2(1)| = 1.
We thus obtain the following lemma.

Lemma 1.2. If f ∈M, then we have the inequality

(1.2) |H2(1)| =
∣∣a3 − a2

2

∣∣ ≤ 1.

This result is sharp and the extremal function is

f(z) =
z

1− z2
.
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Consider the product

B(z) =
n∏
k=1

z − zk
1− zkz

.

The functionB(z) is called a finite Blaschke product, where z1, z2, ..., zn ∈
E. Let the function Θ(z) satisfy the condition of the Schwarz lemma
and also have zeros z1, z2, ..., zn . Thus, one can see that the inequality
(1.2) can be strengthened by standard methods as follows:

|H2(1)| =
∣∣a3 − a2

2

∣∣ ≤ n∏
k=1

|zk| .

Since the area of applicability of Schwarz Lemma is quite wide, there
exist many studies about it. Some of these studies, which is called the
boundary version of Schwarz Lemma, are about being estimated from
below the modulus of the derivative of the function at some boundary
point of the unit disc. The boundary version of Schwarz Lemma is given
as follows:

If f extends continuously to some boundary point c with |c| = 1,
and if |f(c)| = 1 and f ′(c) exists, then |f ′(c)| ≥ 1, which is known
as the Schwarz lemma on the boundary. In addition to conditions of
the boundary Schwarz Lemma, if f fixes the point zero, that is f(z) =
apz

p + ap+1z
p+1 + ..., then the inequality

(1.3) |f ′(c)| ≥ p+
1− |ap|
1 + |ap|

≥ p

is obtained [11]. Inequality (1.3) and its generalizations have important
applications in geometric theory of functions and they are still hot topics
in the mathematics literature [1–4,7,9–14]. Mercer [8] prove a version of
the Schwarz lemma where the images of two points are known. Also, he
considers some Schwarz and Carathéodory inequalities at the boundary,
as consequences of a lemma due to Rogosinski [9]. In addition, he ob-
tained a new boundary Schwarz lemma , for analytic functions mapping
the unit disk to itself [10].

The following lemma, known as the Julia-Wolff lemma, is needed in
the sequel (see [15]).

Lemma 1.3 (Julia-Wolff lemma). Let f be an analytic function in E,
f(0) = 0 and f(E) ⊂ E. If, in addition, the function f has an angular
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limit f(c) at c ∈ ∂E, |f(c)| = 1, then the angular derivative f ′(c) exists
and 1 ≤ |f ′(c)| ≤ ∞.

Corollary 1.4. The analytic function f has a finite angular deriv-
ative f ′(c) if and only if f ′ has the finite angular limit f ′(c) at c ∈ ∂E.

2. Main Results

In this section, we discuss different versions of the boundary Schwarz
lemma forM class. Assuming the existence of angular limit on a bound-
ary point, we obtain some estimations from below for the moduli of
derivatives of analytic functions from a certain class. We also show that
these estimations are sharp.

Theorem 2.1. Let f ∈M. Assume that, for some c ∈ ∂E, f has an
angular limit f(c) at c, f ′(c) = 0. Then we have the inequality

(2.1) |f ′′(c)| ≥ 2 |f(c)|2 .
Moreover, the equality in (2.1) occurs for the function

f(z) =
z

1− z2
.

Proof. Let

Θ(z) =

(
z

f(z)

)2

f ′(z)− 1.

Θ(z) is an analytic function in E, Θ(0) = 0 and |Θ(z)| < 1 for z ∈ E.
Also, we take |Θ(c)| = 1 for c ∈ ∂E. Therefore, from (1.3) for p = 2, we
obtain

2 ≤ |Θ′(c)| = |f
′′(c)|
|f(c)|2

and
|f ′′(c)| ≥ 2 |f(c)|2 .

This result is sharp for f(z) = z
1−z2 ∈ M and c = i ∈ ∂E. Indeed, we

have

|f ′(i)| = 1

2
= 2 |f(i)|2 .

The inequality (2.1) can be strengthened as below by taking into
account a2 and a3 which is second and third coefficient in the expansion
of the function f(z) = z + a2z

2 + a3z
3 + ....
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Theorem 2.2. Under the same assumptions as in Theorem 2.1, we
have

(2.2) |f ′′(c)| ≥ |f(c)|2
(

1 +
2

1 + |H2(1)|

)
.

The inequality (2.2) is sharp for the only case |H2(1)| = 1.

Proof. Let Θ(z) be the same as in the proof of Theorem 2.1. There-
fore, from (1.3) for p = 2, we obtain

2 +
1− |c2|
1 + |c2|

≤ |Θ′(c)| = |f
′′(c)|
|f(c)|2

,

where |c2| = |Θ′′(0)|
2!

= |a3 − a2
2| .

Therefore, we take

2 +
1− |a3 − a2

2|
1 + |a3 − a2

2|
≤ |f

′′(c)|
|f(c)|2

,

1 +
2

1 + |a3 − a2
2|
≤ |f

′′(c)|
|f(c)|2

and

|f ′′(c)| ≥ |f(c)|2
(

1 +
2

1 + |a3 − a2
2|

)
.

Since |H2(1)| = |a3 − a2
2|, we obtain

|f ′′(c)| ≥ |f(c)|2
(

1 +
2

1 + |H2(1)|

)
.

This result is sharp for f(z) = z
1−z2 ∈ M and c = i ∈ ∂E. Indeed, we

have

|f ′(i)| = 1

2
= |f(i)|2

(
1 +

2

1 + |H2(1)|

)
,

since |H2(1)| = 1.

In the following theorem, inequality (2.2) has been strenghened by
adding the consecutive term a4 of f(z) function.

Theorem 2.3. Let f ∈M. Assume that, for some c ∈ ∂E, f has an
angular limit f(c) at c, f ′(c) = 0. Then we have the inequality
(2.3)

|f ′′(c)| ≥ 2 |f(c)|2
(

1 +
(1− |H2(1)|)2

1− |H2(1)|2 + 2 |a4 − a2 (a2
2 + 2H2(1))|

)
.
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Proof. Let Θ(z) be the same as in the proof of Theorem 2.1 and
B0(z) = z2. By the maximum principle, for each z ∈ E, we have the
inequality |Θ(z)| ≤ |B0(z)|. Therefore

(2.4) p(z) =
Θ(z)

B0(z)

is analytic function in E and |p(z)| ≤ 1 for |z| < 1. In particular, we
have

(2.5) |p(0)| =
∣∣a3 − a2

2

∣∣ = |H2(1)|
and

|p′(0)| =
∣∣2a4 − 4a2a3 + 2a3

2

∣∣ .
Furthermore, the geometric meaning of the derivative and the inequality
|Θ(z)| ≤ |B0(z)| imply the inequality

cΘ′(c)

Θ(c)
= |Θ′(c)| ≥ |B′0(c)| = cB′0(c)

B0(c)
.

That is, since the expression cΘ′(c)
Θ(c)

is a real number greater or equal to

1 (see [3]) and f ′(c) = 0 yields |Θ(c)| = 1 and |B0(c)| = 1, we take

cΘ′(c)

Θ(c)
=

∣∣∣∣cΘ′(c)Θ(c)

∣∣∣∣ = |Θ′(c)|

and
cB′0(c)

B0(c)
=

∣∣∣∣cB′0(c)

B0(c)

∣∣∣∣ = |B′0(c)| .

Also, |Θ(z)| ≤ |B0(z)|, we get

1− |Θ(z)|
1− |z|

≥ 1− |B0(z)|
1− |z|

.

Passing to the angular limit in the last inequality yields |Θ′(c)| ≥ |B′0(c)|.
The composite function

Ω(z) =
p(z)− p(0)

1− p(0)p(z)

is analytic in E, Ω(0) = 0, |Ω(z)| < 1 for |z| < 1 and |Ω(c)| = 1 for
c ∈ ∂E. For p = 1, from (1.3), we obtain

2
1+|Ω′(0)| ≤ |Ω

′(c)| = 1−|p(0)|2

|1−p(0)p(c)|2 |p
′(c)| ≤ 1+|p(0)|

1−|p(0)|

∣∣∣Θ′(c)
B0(c)

− Θ(c)B′0(c)

B2
0(c)

∣∣∣
=1+|p(0)|

1−|p(0)|

∣∣∣ Θ(c)
cB0(c)

∣∣∣ ∣∣∣ cΘ′(c)Θ(c)
− cB′0(c)

B0(c)

∣∣∣ = 1+|p(0)|
1−|p(0)| {|Θ

′(c)| − |B′0(c)|} .
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Since

Ω′(z) =
1− |p(0)|2(

1− p(0)p(z)
)2p

′(z)

and

|Ω′(0)| = |p′(0)|
1− |p(0)|2

=
|2a4 − 4a2a3 + 2a3

2|
1− |a3 − a2

2|
2 ,

we obtain

2

1 +
|2a4−4a2a3+2a32|

1−|a3−a22|2
≤ 1 + |a3 − a2

2|
1− |a3 − a2

2|

(
|f ′′(c)|
|f(c)|2

− 2

)

and

|f ′′(c)| ≥ 2 |f(c)|2
(

1 +
(1− |a3 − a2

2|)
2

1− |a3 − a2
2|

2
+ 2 |a4 − 2a2a3 + a3

2|

)
.

Since |H2(1)| = |a3 − a2
2|, we obtain the inequality (2.3).

If f(z)−z a have zeros different from z = 0, taking into account these
zeros, the inequality (2.3) can be strengthened in another way. This is
given by the following Theorem.

Theorem 2.4. Let f ∈ M. Assume that, for some c ∈ ∂E, f has
an angular limit f(c) at c, f ′(c) = 0. Let z1, z2, ..., zn be zeros of the
function f(z) − z in E that are different from zero. Then we have the
inequality

|f ′′(c)| ≥ |f(c)|2
(

2 +
n∑
i=1

1−|zi|2

|c−zi|2
(2.6)

+
2

(
n∏

i=1
|zi|−|H2(1)|

)2

(
n∏

i=1
|zi|
)2

−|H2(1)|2+
n∏

i=1
|zi|
∣∣∣∣2(a4−a2(a22+2H2(1)))+H2(1)

n∑
i=1

1−|zi|2
zi

∣∣∣∣

 .

Proof. Let Θ(z) be as in the proof of Theorem 1 and z1, z2, ..., zn be
zeros of the function f(z)− z in E that are different from zero. Let

B(z) = z2

n∏
i=1

z − zi
1− ziz

.
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B(z) is an analytic function in E and |B(z)| < 1 for |z| < 1. By the
maximum principle for each z ∈ E, we have |Θ(z)| ≤ |B(z)|. Consider
the function

t(z) =
Θ(z)

B(z)
=

[(
z

f(z)

)2

f ′(z)− 1

]
1

z2
n∏
i=1

z−zi
1−ziz

=
(a3 − a2

2) z2 + (2a4 − 4a2a3 + 2a3
2) z3 + ...

z2
n∏
i=1

z−zi
1−ziz

,

=
(a3 − a2

2) + (2a4 − 4a2a3 + 2a3
2) z + ...

n∏
i=1

z−zi
1−ziz

.

t(z) is analytic in E and |t(z)| < 1 for z ∈ E. In particular, we have

|t(0)| = |a3 − a2
2|

n∏
i=1

|zi|
=
|H2(1)|
n∏
i=1

|zi|

and

|t′(0)| =

∣∣∣∣2a4 − 4a2a3 + 2a3
2 + (a3 − a2

2)
n∑
i=1

1−|zi|2
zi

∣∣∣∣
n∏
i=1

|zi|
.

Moreover, with the simple calculations, we get

cΘ′(c)

Θ(c)
= |Θ′(c)| ≥ |B′(c)| = cB′(c)

B(c)

and

|B′(c)| = 2 +
n∑
i=1

1− |zi|2

|c− zi|2
.

The auxiliary function

Υ(z) =
t(z)− t(0)

1− t(0)t(z)
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is analytic in the unit disc E, Υ(0) = 0, |Υ(z)| < 1 for z ∈ E and
|Υ(c)| = 1 for c ∈ ∂E. From (1.3) for p = 1, we obtain

2

1 + |Υ′(0)|
≤ |Υ′(c)| = 1− |t(0)|2∣∣∣1− t(0)t(c)

∣∣∣2 |t′(c)|
≤ 1 + |t(0)|

1− |t(0)|

∣∣∣∣Θ′(c)B(c)
− Θ(c)B′(c)

B2(c)

∣∣∣∣
=

1 + |t(0)|
1− |t(0)|

∣∣∣∣ Θ(c)

cB(c)

∣∣∣∣ ∣∣∣∣cΘ′(c)Θ(c)
− cB′(c)

B(c)

∣∣∣∣
=

1 + |t(0)|
1− |t(0)|

{|Θ′(c)| − |B′(c)|} .

Since

|Υ′(0)| =
|t′(0)|

1− |t(0)|2
=

∣∣∣∣2a4−4a2a3+2a32+(a3−a22)
n∑

i=1

1−|zi|2
zi

∣∣∣∣
n∏

i=1
|zi|

1−

 |a3−a22|
n∏

i=1
|zi|

2

=
n∏
i=1

|zi|

∣∣∣∣2a4 − 4a2a3 + 2a3
2 + (a3 − a2

2)
n∑
i=1

1−|zi|2
zi

∣∣∣∣(
n∏
i=1

|zi|
)2

− |a3 − a2
2|

2

,

we get
2

1+
n∏

i=1
|zi|

∣∣∣∣∣2a4−4a2a3+2a32+(a3−a22)
n∑

i=1

1−|zi|2
zi

∣∣∣∣∣(
n∏

i=1
|zi|

)2

−|a3−a22|2

≤

1+
|a3−a22|

n∏
i=1
|zi|

1−
|a3−a22|

n∏
i=1
|zi|

{
|f ′′(c)|
|f(c)|2 − 2−

n∑
i=1

1−|zi|2

|c−zi|2

}
,

2

((
n∏

i=1
|zi|
)2

−|a3−a22|2
)

(
n∏

i=1
|zi|
)2

−|a3−a22|2+
n∏

i=1
|zi|
∣∣∣∣2a4−4a2a3+2a32+(a3−a22)

n∑
i=1

1−|zi|2
zi

∣∣∣∣
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≤
n∏

i=1
|zi|+|a3−a22|

n∏
i=1
|zi|−|a3−a22|

{
|f ′′(c)|
|f(c)|2 − 2−

n∑
i=1

1−|zi|2

|c−zi|2

}
,

and

|f ′′(c)| ≥ |f(c)|2
(

2 +
n∑
i=1

1−|zi|2

|c−zi|2

+
2

(
n∏

i=1
|zi|−|a3−a22|

)2

(
n∏

i=1
|zi|
)2

−|a3−a22|2+
n∏

i=1
|zi|
∣∣∣∣2a4−4a2a3+2a32+(a3−a22)

n∑
i=1

1−|zi|2
zi

∣∣∣∣

 .

Since |H2(1)| = |a3 − a2
2|, we take the inequality (2.6) .

If f(z) − z has no zeros different from z = 0 in Theorem 3, the in-
equality (2.3) can be further strengthened. This is given by the following
theorem.

Theorem 2.5. Let f ∈M and a3 > a2
2 (a2 > 0, a3 > 0). Also, f(z)−

z has no zeros in E except z = 0. Further assume that, for some c ∈ ∂E,
f has an angular limit f(c) at c, f ′(c) = 0. Then we have the inequality
(2.7)

|f ′′(c)| ≥ 2 |f(c)|2
(

1− H2 (1) ln2 (H2 (1))

2H2 (1) ln (H2 (1))− 2 |a4 − a2 (a2
2 + 2H2 (1))|

)
and

(2.8)
∣∣a4 − a2

(
a2

2 + 2H2 (1)
)∣∣ ≤ |H2 (1) ln (H2 (1))| .

Proof. Let a3 > a2
2 and Θ(z), p(z) be as in the proof of Theorem 2.3.

Having in mind inequality (2.4), and also inequality (2.5), we denote by
ln p(z) the analytic branch of the logarithm normed by the condition

ln p(0) = ln
(
a3 − a2

2

)
= lnH2 (1) < 0.

The function

T (z) =
ln p(z)− ln p(0)

ln p(z) + ln p(0)
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is analytic in the unit disc E, |T (z)| < 1 for z ∈ E, T (0) = 0 and
|T (c)| = 1 for c ∈ ∂E. From (1.3) for p = 1, we obtain

2

1 + |T ′(0)|
≤ |T ′(c)| = |2 ln p(0)|

|ln p(c) + ln p(0)|2

∣∣∣∣p′(c)p(c)

∣∣∣∣
=

−2 ln p(0)

ln2 p(0) + arg2 p(c)

∣∣∣∣Θ′(c)B0(c)
− Θ(c)B′0(c)

B2
0(c)

∣∣∣∣
=

−2 ln p(0)

ln2 p(0) + arg2 p(c)

∣∣∣∣ Θ(c)

cB0(c)

∣∣∣∣ ∣∣∣∣cΘ′(c)Θ(c)
− cB′0(c)

B0(c)

∣∣∣∣
=

−2 ln p(0)

ln2 p(0) + arg2 p(c)
{|Θ′(c)| − |B′0(c)|} .

Since

|T ′(0)| =
1

|2 ln p(0)|

∣∣∣∣p′(0)

p(0)

∣∣∣∣ =
−1

2 lnH2 (1)

|2a4 − 4a2a3 + 2a3
2|

H2 (1)

=
−1

2 lnH2 (1)

2 |a4 − a2 (a2
2 + 2H2(1))|

H2 (1)

=
−1

lnH2 (1)

|a4 − a2 (a2
2 + 2H2(1))|

H2 (1)
,

we take

1

1− |a4−a2(a
2
2+2H2(1))|

H2(1) lnH2(1)

≤ − ln p(0)

ln2 p(0) + arg2 p(c)

(
|f ′′(c)|
|f(c)|2

− 2

)
.

Replacing arg2 p(c) by zero, we take

1

1− |a4−a2(a
2
2+2H2(1))|

H2(1) lnH2(1)

≤ −1

ln p(0)

(
|f ′′(c)|
|f(c)|2

− 2

)
=

−1

lnH2 (1)

(
|f ′′(c)|
|f(c)|2

− 2

)
,

2− H2 (1) ln2H2 (1)

H2 (1) lnH2 (1)− |a4 − a2 (a2
2 + 2H2(1))|

≤ |f
′′(c)|
|f(c)|2

and

|f ′′(c)| ≥ 2 |f(c)|2
(

1− 1

2

H2 (1) ln2H2 (1)

H2 (1) lnH2 (1)− |a4 − a2 (a2
2 + 2H2(1))|

)
.
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Similarly, the function T (z) satisfies the assumptions of the Schwarz
lemma, we obtain

1 ≥ |T ′(0)| = |2 ln p(0)|
|ln p(0) + ln p(0)|2

∣∣∣∣p′(0)

p(0)

∣∣∣∣ =
−1

2 ln p(0)

∣∣∣∣p′(0)

p(0)

∣∣∣∣
=

−1

2 lnH2 (1)

2 |a4 − a2 (a2
2 + 2H2(1))|

H2 (1)

and ∣∣a4 − a2

(
a2

2 + 2H2(1)
)∣∣ ≤ |H2 (1) lnH2 (1)| .

Theorem 2.6. Under hypotheses of Theorem 2.5, we have

(2.9) |f ′′(c)| ≥ 2 |f(c)|2
(

1− 1

4
lnH2 (1)

)
.

Proof. From proof of Theorem 2.5, using the inequality (1.3) for the
function T (z), we obtain

1 ≤ |2 ln p(0)|
|ln p(c) + ln p(0)|2

∣∣∣∣p′(c)p(c)

∣∣∣∣ =
−2

lnH2 (1)

(
|f ′′(c)|
|f(c)|2

− 2

)
and

|f ′′(c)| ≥ 2 |f(c)|2
(

1− 1

4
lnH2 (1)

)
.
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Department of Computer Engineering
Amasya University
Merkez-Amasya, 05100, Turkey
E-mail : nafiornek@gmail.com, nafi.ornek@amasya.edu.tr


