DOI QR코드

DOI QR Code

The relation between sewage sludge solubilization and extracellular polymeric substances

하수슬러지 가용화와 체외고분자물질(EPS)간의 관계

  • Jeon, Byeong-Cheol (Department of Operation&Maintenance, DOHWA Engineering) ;
  • Nam, Se-Yong (Department of Civil, Safety and Environmental Engineering, Hankyong National University)
  • 전병철 ((주)도화엔지니어링 O&M사업부) ;
  • 남세용 (국립한경대학교 토목안전환경공학과)
  • Received : 2019.11.20
  • Accepted : 2019.12.09
  • Published : 2019.12.20

Abstract

In order to investigate the relation between sewage sludge solubilization and extracellular polymeric substances(EPS) during alkaline-ultrasonic pretreatment, SCOD/TCOD ratio, solubilization rate, VSS/TS ratio, VSS reduction rate, LB-EPS(Loosely-Bound EPS) and TB-EPS(Tightly-Bound EPS) were measured. At the condition of TS 1.0% and pH 12, solubilization rate increased by 27.7%, LB-EPS as Carbohydrate and Protein increased by 14.6 and 13.3 mg/L/g TS, respectively. Withal, VSS decreased by 26.7% and TB-EPS as Carbohydrate and Protein were extracted by 15.7 and 21.9 mg/L/g TS, respectively. Consequently, the concentrations of organic matter and LB-EPS increased and the trends appeared similarly. In addition, the concentrations trend of decreasing solid matter and extracted TB-EPS also appeared similarly.

본 연구는 알칼리·초음파 전처리를 통한 하수슬러지의 가용화 정도를 확인하기 위해 슬러지 가용화율과 VSS 감량화율을 측정하였다. 또한 슬러지 가용화와 EPS간의 관계를 확인하기 위해 LB-EPS(Loosely-Bound EPS), TB-EPS(Tightly-Bound EPS)를 측정하였다. 실험 결과, TS 1.0%, pH 12 조건에서 슬러지 가용화율은 27.7% 증가하였고, LB-EPS as Carbohydrate와 Protein은 각각 14.6, 13.3 mg/L/g TS가 증가하여 가용화에 따른 유기물의 변화와 유사한 경향을 나타내었다. 또한 VSS는 26.7% 감량되었고, TB-EPS as Carbohydrate와 Protein은 각각 15.7, 21.9 mg/L/g TS 용출되어 가용화에 따른 고형물의 변화 역시 유사한 경향을 나타내었다.

Keywords

References

  1. Ministry of Environment, "Statstics of sewerage 2016". (2018).
  2. Ahn, H. C. and Lee, Y. S., "A study on optimum conditions for molding sewage sludge", Journal of the Korea Organic Resource Recycling Association, 23(1), pp. 29-37. (2015). https://doi.org/10.17137/korrae.2015.23.1.029
  3. Yoo, H. Y., Chung, D., Yoon, C. W. and Kang, J. G., "Economic Evaluation for recycling of Organic Waste", Journal of the Korea Organic Resource Recycling Association, 24(4), pp. 11-20. (2016). https://doi.org/10.17137/korrae.2016.24.4.11
  4. Kim, H. M., Choi, J. Y., Yoon, S. P. and Kim, J. K., "A basic study on the recycling of dredged sewage sediment", Journal of the Korea Organic Resource Recycling Association, 26(3), pp. 33-37. (2018). https://doi.org/10.17137/korrae.2018.26.3.33
  5. Kim, D. H., Jeong, E., Oh, S. E. and Shin, H. S., "Combined(alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration", Water research, 44(10), pp. 3093-3100. (2010). https://doi.org/10.1016/j.watres.2010.02.032
  6. Sahinkaya, S. and Sevimli, M. F., "Effects and modelling of ultrasonic waste-activated sludge disintegration", Water and environment journal, 27, pp. 238-246. (2012). https://doi.org/10.1111/j.1747-6593.2012.00358.x
  7. Kampas, P., Parsons, S. A., Pearce, P., Ledoux, S., Vale, P., Churchley, J. and Cartmell, E., "Mechanical sludge disintegration for the production of carbon source for biological nutrient removal", Water research, 41, pp. 1734-1742. (2007). https://doi.org/10.1016/j.watres.2006.12.044
  8. Pilli, S., Bhunia, P., Yan, S., Leblanc, R. J., Tyagi, R. D. and Surampalli, R. Y., "Ultrasonic pretreatment of sludge: A review", Ultrasonic sonochemistry, 18(1), pp. 1-18. (2011). https://doi.org/10.1016/j.ultsonch.2010.02.014
  9. He, J., Wan, T., Zhang, G. and Yang, J., "Ultrasonic reduction of excess sludge from activated sludge system: Energy efficiency improvement via operation optimization", Ultrasonics sonochemistry, 18(1), pp. 99-103. (2011). https://doi.org/10.1016/j.ultsonch.2010.03.006
  10. Zhang, P., Zhang, G. and Wang, W., "Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation", Bioresource technology, 98(1), pp. 207-210. (2007). https://doi.org/10.1016/j.biortech.2005.12.002
  11. Zheng, M., Liu, Y. C., Xu, K. N., Wang, C. W., He, H., Zhu, W. and Dong, Q., "Use of low frequency and density ultrasound to stimulate partial nitrification and simultaneous nitrification and denitrification", Bioresource technology, 146, pp. 537-542. (2013). https://doi.org/10.1016/j.biortech.2013.07.044
  12. Cho, S. K., Shin, H. S. and Kim, D. H., "Waste activated sludge hydrolysis during ultrasonication: Two-step disintegration", Bioresource technology, 121, pp. 480-483. (2012). https://doi.org/10.1016/j.biortech.2012.07.024
  13. Sheng, G. P., Yu, H. Q. and Li, X. Y., "Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review", Biotechnology advances, 28(6), pp. 882-894. (2010). https://doi.org/10.1016/j.biotechadv.2010.08.001
  14. APHA, "Standard methods for the examination of water and wastewater", 21st Ed., American public health association, Washington DC, USA. (2005).