DOI QR코드

DOI QR Code

Biogas Production from Sewage Sludge in 30L Microbial Electrolysis Cell

30L 미생물전기분해전지의 하수슬러지로부터 바이오가스 생산 특성

  • Lee, Myoung-Eun (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Ahn, Yongtae (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Shin, Seung Gu (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Seo, Sun-Chul (Wastewater Treatment Department, Youngjin Environment) ;
  • Chung, Jae Woo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology)
  • 이명은 (경남과학기술대학교 환경공학과) ;
  • 안용태 (경남과학기술대학교 에너지공학과) ;
  • 신승구 (경남과학기술대학교 에너지공학과) ;
  • 서선철 (용진환경) ;
  • 정재우 (경남과학기술대학교 환경공학과)
  • Received : 2019.10.17
  • Accepted : 2019.11.24
  • Published : 2019.12.20

Abstract

Operating characteristics of a 30 L microbial electrolysis cell (MEC) for producing biogas from sewage sludge was studied. During the 32-day inoculation period, carbon dioxide concentration decreased and methane concentration increased with operating time, and the overall methane content of biogas was 69.1% with a production rate of 171.6 mL CH4/L·d. In fed-batch experiments for 6 operating cycles, CH4 concentration of 66.5~77.2% was obtained at a production rate of 184.9~372.9 mL CH4/L·d, COD, TS and VS removal efficiency ranged from 28.2 to 42.1%, 20.7 to 37.5% and 18.5 to 36.9%, respectively. The MEC system was observed to be stabilized as operating cycles were repeated after inoculation. In the last operating cycle, 5221 mL/L of methane was produced with CH4 yield of 316.7 L CH4/kg CODrem, and the energy recovery was 73%.

하수슬러지로부터 바이오가스를 생산하기 위한 30 L 규모의 미생물전기분해전지 시스템의 초기 운전특성에 관한 연구를 수행하였다. 32일간의 식종기간동안, 운전시간이 경과함에 따라 이산화탄소 농도는 감소하고 메탄농도가 증가하였으며, 69.1%의 농도를 가진 메탄가스가 171.6 mL CH4/L·d의 속도로 얻어졌다. 식종이 끝난 후에 6회의 운전 사이클동안 이루어진 회분식 실험에서, 66.5~77.2%의 농도를 가진 메탄을 184.9~372.9 mL CH4/L·d의 생산속도로 얻어졌다. COD의 제거효율은 28.2~42.1%의 범위를 가지며, TS와 VS의 제거효율은 각각 20.7~37.5%와 18.5~36.9%의 범위를 가지는 것으로 나타났다. 식종 후 운전 사이클이 반복됨에 따라 시스템의 안정화가 이루어지는 것이 관찰되었다. 마지막 운전 사이클에서 메탄의 발생량과 수율은 각각 5221 mL/L와 316.7 L CH4/kg CODrem이었으며 에너지회수율은 73%이었다.

Keywords

References

  1. Elalami, D., Carrere, H., Monlau, F., Abdelouahdi, K. Qukarroum, A. and Barakat, A., "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renew. Sustain. Energy Rev., 114, 109287. (2019). https://doi.org/10.1016/j.rser.2019.109287
  2. Guo, X., Liu, J. and Xiao, B., "Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells," Int. J. Hydrogen Energy, 38(3), pp. 1342-1347. (2013). https://doi.org/10.1016/j.ijhydene.2012.11.087
  3. Bundhoo, Z. M. A., "Coupling dark fermentation with biochemical or bioelectrochemical systems for enhanced bio-energy production: A review," Int. J. hydrogen energy, 42(43), pp. 26667-26686. (2017). https://doi.org/10.1016/j.ijhydene.2017.09.050
  4. Geppert, F., Liu, D., van Eerten-Jansen, M., Weidner, E., Buisman, C. and Ter Heijne, A., "Bioelectrochemical power-to-gas: State of the art and furture perspectives," Trends Biotechnol., 34(11), pp. 879-894. (2016). https://doi.org/10.1016/j.tibtech.2016.08.010
  5. Zhang, Y. and Angelidaki, I., "Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges," Water Res., 56, pp. 11-25. (2014). https://doi.org/10.1016/j.watres.2014.02.031
  6. Feng, Q., Song, Y.-C., Kim, D.-H., Kim, M.-S. and Kim, D.-H., "Influence of the temperature and hydraulic retention time in bioelectrochemical anaerobic digestion of sewage sludge," Int. J. hydrogen energy, 44(4), pp. 2170-2179. (2019). https://doi.org/10.1016/j.ijhydene.2018.09.055
  7. Song, Y. C., Feng, Q. and Ahn, Y. T., "Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times," Energ. Fuel, 30(1). pp. 352-359. (2016). https://doi.org/10.1021/acs.energyfuels.5b02003
  8. Bo, T., Zhu, X., Zhang, L., Tao, Y., He, X. and Li, D., "A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor", Electrochem. Commun.. 45, pp. 67-70. (2014). https://doi.org/10.1016/j.elecom.2014.05.026
  9. Zhang, J., Zhang, Y., Quan, X., Chen, S. and Afzal, S., "Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions", Bioresour. Technol., 136, pp. 273-280. (2013). https://doi.org/10.1016/j.biortech.2013.02.103
  10. Beegle, J. R. and Borole, A. P., "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renew. Sustain. Energy Rev., 96, pp. 343-351. (2018). https://doi.org/10.1016/j.rser.2018.07.057
  11. Heidrich, E.S., Dolfing, J., Scott, K., Edwards, S.R., Jones, C. and Curtis, T.P., "Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell," Appl Microbiol. Biotechnol., 97(15), pp. 6979-6989. (2013). https://doi.org/10.1007/s00253-012-4456-7
  12. Heidrich, E. S., Edwards, S. R., Dolfing, J., Cotterill, S. E. and Curtis, T. P., "Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperature for a 12 month period," Bioresour. Technol., 173, pp. 87-95. (2014). https://doi.org/10.1016/j.biortech.2014.09.083
  13. Chung, J.-W., Lee, M.-E., Seo, S.-C. and Ahn, Y., "Effect of waste activated sludge mixing ratio on the biogas prodution in bioelectrochemical anaerobic digestion," J. of KORRA, 26(4), pp. 53-61. (2018).
  14. Anderson, G. K. and Yang, G., "Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration" Water Environment Research, 64(1), pp. 53-59. (1992). https://doi.org/10.2175/WER.64.1.8
  15. Ahn, Y., Im, S. and Chung, J.-W., "Optimizing the operating temperature for microbial electrolysis cell treating sewage sludge," Int. J. hydrogen energy, 42(45), pp. 27784-27791. (2017). https://doi.org/10.1016/j.ijhydene.2017.05.139
  16. Padilla-Gasca, E., Lopez-Lopez, A. and Gallardo-Valdez, J., "Evaluation of Stability Factors in the Anaerobic Treatment of Slaughterhouse Wastewater," J. Biorem. Biodegrad., 2(114), pp. 2155-6199. (2011).
  17. Purser, B. J., Thai, S. M., Fritz, T., Esteves, S. R., Dinsdale, R. M. and Guwy, A. J., "An improved titration model reducing over estimation of total volatile fatty acids in anaerobic digestion of energy crop, animal slurry and food waste", Water Res., 61, pp. 162-170. (2014). https://doi.org/10.1016/j.watres.2014.05.020
  18. Kim, D. H., Song, Y. C. and Feng, Q., "Influence of Applied Voltage for Bioelectrochemical Anaerobic Digestion of Sewage Sludge," J. Korean Soc.. Environ.. Eng., 37(9), pp. 542-549. (2015). https://doi.org/10.4491/KSEE.2015.37.9.542
  19. Song, Y. C., Kwon, S. J. and Woo, J. H., "Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge," Water Res., 38(7), pp. 1653-1662. (2004). https://doi.org/10.1016/j.watres.2003.12.019
  20. Bolzonella, D., Pavan, P., Battistoni, P. and Cecchi, F., "Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process," Process Biochem., 40(3-4), pp. 1453-1460. (2005). https://doi.org/10.1016/j.procbio.2004.06.036
  21. Takashima, M. and Tanaka, Y., "Acidic thermal post-treatment for enhancing anaerobic digestion of sewage sludge," J. of Environ. Chem. Eng., 2(2), pp. 773-779. (2014). https://doi.org/10.1016/j.jece.2014.02.018