DOI QR코드

DOI QR Code

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kumar, Mallem (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Ju, Minkyu (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Youngkuk (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Han, Chang-Soon (Technology Commercialization Team, Laser Advanced System Industrialization Center) ;
  • Park, Jinshu (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Jaimin (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Young Hyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Eun-Chel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2019.07.18
  • 심사 : 2019.09.04
  • 발행 : 2019.12.31

초록

The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

키워드

참고문헌

  1. Hanifi, H., Pfau, C., Dassler, D., Schneider, J., Schindler, S., Turek, M. and Bagdahn, J., "Investigation of cell-to-module (CTM) ratios of PV modules by analysis of loss and gain mechanisms," Photovoltaics Int, Vol. 32, pp. 89-99, 2016.
  2. Witteck, R., Hinken, D., Muller, J., Blankemeyer, S., Bothe, K., Schulte-Huxel, H., Kontges, M. and Brendel, R., "Simulation of optimized cell interconnection for perc modules exceeding 300 w," In The 6th World Conference on Photovoltaic Energy Conversion, Kyoto, 2014.
  3. Haedrich, I., Eitner, U., Wiese, M. and Wirth, H., "Unified methodology for determining CTM ratios: Systematic prediction of module power," Sol. Energy Mater. Sol. Cells, Vol. 131, pp. 14-23, 2014. https://doi.org/10.1016/j.solmat.2014.06.025
  4. Hanifi, H., Dassler, D., Schneider, J., Turek, M., Schindler, S. and Bagdahn, J., "Optimized tab width in half-cell modules," Energy Procedia, Vol. 92, pp. 52-59, 2016. https://doi.org/10.1016/j.egypro.2016.07.009
  5. Zarmai, M.T., Ekere, N.N., Oduoza, C.F. and Amalu, E.H., "A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly," Appl. Energy, Vol. 154, pp. 173-182, 2015. https://doi.org/10.1016/j.apenergy.2015.04.120
  6. SEMI, P., 2016. Group 2012, International Technology Roadmap for Photovoltaic (ITRPV. net), Results 2011.
  7. Mittag, M., Kutter, C., Hoffmann, S., Romer, P., Beinert, A.J. and Zech, T., "Electrical and thermal modeling of junction boxes," 33rd EUPVSEC, Amsterdam, pp. 1501-1506, 2017.
  8. Geipel, T., Moeller, M., Walter, J., Kraft, A. and Eitner, U., "Intermetallic compounds in solar cell interconnections:Microstructure and growth kinetics," Sol. Energy Mater. Sol. Cells, Vol. 159, pp. 370-388, 2017. https://doi.org/10.1016/j.solmat.2016.08.039
  9. Zarmai, M.T., Ekere, N.N., Oduoza, C.F. and Amalu, E.H., "A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembl," Appl. Energy, Vol. 154, pp. 173-182, 2015. https://doi.org/10.1016/j.apenergy.2015.04.120
  10. Tsunomura, Y., Yoshimine, Y., Taguchi, M., Baba, T., Kinoshita, T., Kanno, H., Sakata, H., Maruyama, E. and Tanaka, M., "Twenty-two percent efficiency HIT solar cell," Sol. Energy Mater. Sol. Cells, Vol. 93(6-7), pp. 670-673, 2009. https://doi.org/10.1016/j.solmat.2008.02.037
  11. Zarmai, M.T., Ekere, N.N., Oduoza, C.F. and Amalu, E.H., "A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly," Appl. Energy, Vol. 154, pp. 173-182, 2015. https://doi.org/10.1016/j.apenergy.2015.04.120
  12. Kerschaver, E.V. and Beaucarne, G., “Back-contact solar cells:A review,” Progress in Photovoltaics: Research and Applications, Vol. 14, No. 2, pp. 107-123, 2006. https://doi.org/10.1002/pip.657
  13. Anguiano, C., Felix, M., Medel, A., Bravo, M., Salazar, D. and Marquez, H., “Study of heating capacity of focused IR light soldering systems,” Opt. Express, Vol. 21, No. 20, pp. 23851-23865, 2013. https://doi.org/10.1364/OE.21.023851
  14. Schneider, A., Harney, R., Aulehla, S., Lemp, E. and Koch, S., "Progress in interconnection of busbar-less solar cells by means of conductive gluing," Energy Procedia, Vol. 38, pp. 387-394, 2013. https://doi.org/10.1016/j.egypro.2013.07.294
  15. Park, S., Cho, E., Song, D., Conibeer, G. and Green, M.A., “n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 93, No. 6-7, pp. 684-690, 2009. https://doi.org/10.1016/j.solmat.2008.09.032
  16. Jung, T.H., Song, H.E., Ahn, H.K. and Kang, G.H., "A mathematical model for cell-to-module conversion considering mismatching solar cells and the resistance of the interconnection ribbon," Solar Energy, Vol. 103, pp. 253-262, 2014. https://doi.org/10.1016/j.solener.2014.01.032
  17. Green, M.A., "Solar cells: operating principles, technology, and system applications," Englewood Cliffs, NJ, Prentice-Hall, Inc., pp. 288, 1982.
  18. Roy, J.N., "Comprehensive analysis and modeling of cell to module (CTM) conversion loss during c-Si Solar Photovoltaic (SPV) module manufacturing," Solar Energy, Vol. 130, pp. 184-192, 2016. https://doi.org/10.1016/j.solener.2016.02.020
  19. Kerschaver, E.V. and Beaucarne, G., “Back-contact solar cells:A review,” Progress in Photovoltaics: Research and Applications, Vol. 14, No. 2, pp. 107-123, 2006. https://doi.org/10.1002/pip.657
  20. Bultman, J.H., Weeber, A.W., Brieko, M.W., Hoornstra, J., Burgers, A.R., Dijkstra, J.A., Tip, A.C. and Schuurmans, F.M., "Pin up module: a design for higher efficiency, easy module manufacturing and attractive appearance," In Proceedings of the 16th EPVSC, Glasgow, pp. 1210-1213, 2000.
  21. Wendt, J., Trager, M., Mette, M., Pfennig, A. and Jackel, B., "The link between mechanical stress induced by soldering and micro damages in silicon solar cells," Proc. of 24th EUPVSEC, Hamburg, Germany, 2009.
  22. Gabor, A.M., Ralli, M., Montminy, S., Alegria, L., Bordonaro, C., Woods, J., Felton, L., Davis, M., Atchley, B. and Williams, T., "Soldering induced damage to thin Si solar cells and detection of cracked cells in modules. In 21st European Photovoltaic Solar Energy Conference, pp. 4-8, 2006.
  23. Soderstrom, T., Papet, P. and Ufheil, J., "September. Smart wire connection technology," In the 28th European Photovoltaic Solar Energy Conference, pp. 495-499, 2013.
  24. Munoz, M.A., Alonso-Garcia, M.C., Vela, N. and Chenlo, F., “Early degradation of silicon PV modules and guaranty conditions,” Solar energy, Vol. 85, No. 9, pp. 2264-2274, 2011. https://doi.org/10.1016/j.solener.2011.06.011
  25. Suzuki, S., Doi, T., Masuda, A. and Tanahashi, T., “Bending cyclic load test for crystalline silicon photovoltaic modules,” Jpn. J. Appl. Phys., Vol. 57, No. 2S2, pp. 02CE05, 2018. https://doi.org/10.7567/JJAP.57.02CE05
  26. Bucciarelli Jr, L.L., “Power loss in photovoltaic arrays due to mismatch in cell characteristics,” Solar Energy, Vol. 23, No. 4, pp. 277-288, 1979. https://doi.org/10.1016/0038-092X(79)90121-X
  27. Evans, R. and Boreland, M., "Multivariate analysis of wafer process data," In Proc. 30th Eur. Photovolt. Sol. Energy Conf, 2008.
  28. Kaushika, N.D. Rai, A.K., “An investigation of mismatch losses in solar photovoltaic cell networks,” Energy, Vol. 32, No. 5, pp. 755-759, 2007. https://doi.org/10.1016/j.energy.2006.06.017
  29. Alonso-Garcia, M.C., Ruiz, J.M. Chenlo, F., “Experimental study of mismatch and shading effects in the I-V characteristic of a photovoltaic module,” Sol. Energy Mater. Sol. Cells, Vol. 90, No. 3, pp. 329-340, 2006. https://doi.org/10.1016/j.solmat.2005.04.022
  30. Roche, D., Outhred, H., Kaye, R.J., “Analysis and control of mismatch power loss in photovoltaic arrays,” Progress in Photovoltaic, Vol. 3, No. 2, pp. 115-127, 1995. https://doi.org/10.1002/pip.4670030204
  31. Park, C., Yoon, N., Min, Y.K., Ko, J.W., Lim, J.R., Jang, D.S., Ahn, J.H., Ahn, H., “Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods,” Transactions on Electrical and Electronic Materials, Vol. 15, No. 2, pp. 103-111, 2014. https://doi.org/10.4313/TEEM.2014.15.2.103
  32. Woyte, A., Nijs, J. Belmans, R., "Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results," Solar energy, Vol. 74 No. 3, pp. 217-233, 2003. https://doi.org/10.1016/S0038-092X(03)00155-5
  33. Jung, T.H., Ko, J.W., Kang, G.H., Ahn, H.K., "Output characteristics of PV module considering partially reverse biased conditions," Solar Energy, Vol. 92, pp. 214-220, 2013.
  34. Maki, A., Valkealahti, S., “Power losses in long string and parallel-connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions,” IEEE Transactions on Energy Conversion, Vol. 27, No. 1, pp. 173-183, 2012. https://doi.org/10.1109/TEC.2011.2175928
  35. Kaushika, N.D. Rai, A.K., “An investigation of mismatch losses in solar photovoltaic cell networks,” Energy, Vol. 32, No. 5, pp. 755-759, 2007. https://doi.org/10.1016/j.energy.2006.06.017
  36. Bucciarelli Jr, L.L., “Power loss in photovoltaic arrays due to mismatch in cell characteristics,” Solar Energy, Vol. 23, No. 4, pp. 277-288, 2012. https://doi.org/10.1016/0038-092X(79)90121-X
  37. Bishop, J.W., “Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits,” Solar cells, Vol. 25, No. 1, pp. 73-89, 1988. https://doi.org/10.1016/0379-6787(88)90059-2
  38. Webber, J., Riley, E., "Mismatch loss reduction in photovoltaic arrays as a result of sorting photovoltaic modules by max-power parameters," ISRN Renewable Energy, 2013.
  39. Wilson, K., De Ceuster, D., Sinton, R.A., "Measuring the effect of cell mismatch on module output," IEEE 4th World Conference on Photovoltaic Energy Conference, Vol. 1, pp. 916-919, 2006.
  40. Chamberlin, C.E., Lehman, P., Zoellick, J., Pauletto, G., “Effects of mismatch losses in photovoltaic arrays,” Solar energy, Vol. 54, No. 3, pp. 165-171, 1995. https://doi.org/10.1016/0038-092X(94)00120-3
  41. Kaushika, N.D. and Rai, A.K., “An investigation of mismatch losses in solar photovoltaic cell networks,” Energy, Vol. 32, No. 5, pp. 755-759, 2007. https://doi.org/10.1016/j.energy.2006.06.017
  42. MacAlpine, S., Deline, C., Erickson, R. and Brandemuehl, M., "Module mismatch loss and recoverable power in unshaded PV installations," IEEE Photovoltaic Specialists Conference, pp. 001388-001392, 2012.
  43. Iannone, F., Noviello, G., Sarno, A., “Monte Carlo techniques to analyse the electrical mismatch losses in large-scale photovoltaic generators,” Solar energy, Vol. 62, No. 2, pp. 85-92, 1998. https://doi.org/10.1016/S0038-092X(97)00085-6
  44. Lappalainen, K., Valkealahti, S., "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Appl. Energy, Vol. 190, pp. 902-910, 2017. https://doi.org/10.1016/j.apenergy.2017.01.013
  45. Evans, R., Kim, K.H., Wang, X., Sugianto, A., Chen, X., Chen, R., Green, M.A., "Simplified technique for calculating mismatch loss in mass production," Sol. Energy Mater. Sol. Cells, Vol. 134, pp. 236-243, 2015. https://doi.org/10.1016/j.solmat.2014.11.036
  46. Gasparin, F.P., Buhler, A.J., Rampinelli, G.A., Krenzinger, A., Statistical analysis of I-V curve parameters from photovoltaic modules. Solar energy, Vol. 131, pp. 30-38, 2016. https://doi.org/10.1016/j.solener.2016.01.061
  47. Picault, D., Raison, B., Bacha, S., De La Casa, J., Aguilera, J., “Forecasting photovoltaic array power production subject to mismatch losses,” Solar Energy, Vol. 84, No. 7, pp. 1301-1309, 2010. https://doi.org/10.1016/j.solener.2010.04.009
  48. Evans, R., Kim, K.H., Wang, X., Sugianto, A., Chen, X., Chen, R., Green, M.A., "Simplified technique for calculating mismatch loss in mass production," ol. Energy Mater. Sol. Cells, Vol. 134, pp. 236-243, 2015. https://doi.org/10.1016/j.solmat.2014.11.036
  49. Saha, H., Bhattacharya, G., Mukherjee, D., “Mismatch losses in series combinations of silicon solar cell modules,” Solar cells, Vol. 25, No. 2, pp. 143-153, 1998. https://doi.org/10.1016/0379-6787(88)90018-X
  50. Chung, I., young Son, H., Oh, H., Baek, U.I., Yoon, N., Lee, W.J., Cho, E.C., Moon, I.S., "Light Capturing Film on interconnect ribbon for current gain of crystalline silicon PV modules," IEEE 39th Photovoltaic Specialists Conference, pp. 1478-1480, 2013.
  51. Jung, T.H., Song, H.E., Ahn, H.K., Kang, G.H., "A mathematical model for cell-to-module conversion considering mismatching solar cells and the resistance of the interconnection ribbon," Solar Energy, Vol. 103, pp. 253-262, 2014. https://doi.org/10.1016/j.solener.2014.01.032
  52. Gupta, M., Dubey, A.K., Kumar, V., Mehta, D.S., “Solar concentrator based multipurpose sunlight harvesting system without tracking,” OSA Continuum, Vol. 2, No. 3, pp. 667-676, 2019. https://doi.org/10.1364/OSAC.2.000667
  53. Wohlgemuth, J., Cunningham, D.W., Nguyen, A., Kelly, G., Amin, D., "Failure modes of crystalline Si modules," In PV Module Reliability Workshop, 2010.
  54. Dhere, N.G., "Reliability of PV modules and balance-of-system components," In Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, pp. 1570-1576, 2005.
  55. Cristaldi, L., Faifer, M., Lazzaroni, M., Khalil, A.F.M.M., Catelani, M., Ciani, L., "Failure modes analysis and diagnostic architecture for photovoltaic plants," In Proccedings of the 13 th IMEKO TC10 Workshop on Technical Diagnostics Advanced measurement tools in technical diagnostics for systems' reliability and safety, pp. 206-211, 2014.
  56. Wohlgemuth, J.H., "Reliability of PV systems. In Reliability of Photovoltaic Cells, Modules, Components, and Systems," International Society for Optics and Photonics, Vol. 7048, pp. 704802, 2008.
  57. Zemen, Y., Prewitz, T., Geipel, T., Pingel, S., Berghold, J., "The impact of yield strength of the interconnector on the internal stress of the solar cell within a module," In 25th European Photovoltaic Solar Energy Conference and Exhibition, pp. 4073-4078, 2008.
  58. Kurtz, S., Granata, J., Quintana, M., "In Reliability of Photovoltaic Cells, Modules, Components, and Systems II," International Society for Optics and Photonics, Vol. 7412, p. 74120Z, 2009.
  59. Grunow, P., "Soldering of crystalline silicon modules: Losses, reliability and improvements," In 2nd Workshop on Metallization of Crystalline Silicon Solar Cells, 2010 .
  60. Han, C.W., Park, N.C., Jeong, J.S., "Lifetime prediction of silicon PV module ribbon wire in three local weathers," In Photovoltaic Module Reliability Workshop, Golden, Colorado, USA, 2012.
  61. Wendt, J., Trager, M., Mette, M., Pfennig, A., Jackel, B., "The link between mechanical stress induced by soldering and micro damages in silicon solar cells," Proc. of 24th EUPVSEC, Hamburg, Germany, 2009.
  62. Dhere, N.G., "Reliability of PV modules and balance-of-system components". In Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005. pp. 1570-1576. IEEE. 2005.
  63. Schmidhuber, H., Klappert, S., Stollhof, J., Erfurt, G., Eberspacher, M., Preu, R., "Laser soldering-a technology for better contacts," In 20th European Photovoltaic Solar Energy Conference, pp. 1-4, 2005.
  64. Tsanakas, J.A., Ha, L., Buerhop, C., "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and sustainable energy reviews, Vol. 62, pp. 695-709, 2016. https://doi.org/10.1016/j.rser.2016.04.079
  65. Barnett, A., Kirkpatrick, D., Honsberg, C., Moore, D., Wanlass, M., Emery, K., Schwartz, R., Carlson, D., Bowden, S., Aiken, D., Gray, A., “Very high efficiency solar cell modules,” Progress in Photovoltaics: Research and Applications, Vol. 17, No. 1, pp. 75-83, 2009. https://doi.org/10.1002/pip.852
  66. El-Dein, M.S., Kazerani, M., Salama, M.M.A., “An optimal total cross tied interconnection for reducing mismatch losses in photovoltaic arrays,” IEEE transactions on sustainable energy, Vol. 4, No. 1, pp. 99-107, 2013. https://doi.org/10.1109/TSTE.2012.2202325
  67. Maghami, M.R., Hizam, H., Gomes, C., Radzi, M.A., Rezadad, M.I., Hajighorbani, S., "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Vol. 59, pp. 1307-1316, 2016. https://doi.org/10.1016/j.rser.2016.01.044
  68. Daliento, S., Chouder, A., Guerriero, P., Pavan, A.M., Mellit, A., Moeini, R., Tricoli, P., "Monitoring, diagnosis, and power forecasting for photovoltaic fields: a review," International Journal of Photoenergy, 2017.
  69. Barnett, A., Kirkpatrick, D., Honsberg, C., Moore, D., Wanlass, M., Emergy, K., Schwartz, R., Carlson, D., Bowden, S., Aiken, D., Gray, A., "Milestones toward 50% efficient solar cell modules," DELAWARE UNIV NEWARK, 2007.