DOI QR코드

DOI QR Code

Synergistic Inhibition of Escherichia coli by a Combination of Bacteriophage and Organic Acid

박테리오파지와 유기산의 병용처리에 의한 효율적인 대장균 생육 억제

  • Kim, Seon-Gyu (Department of Biotechnology, Korea National University of Transportation) ;
  • Moon, Gi-Seong (Department of Biotechnology, Korea National University of Transportation)
  • 김선규 (한국교통대학교 생명공학전공) ;
  • 문기성 (한국교통대학교 생명공학전공)
  • Received : 2019.12.01
  • Accepted : 2019.12.04
  • Published : 2019.12.30

Abstract

Some strains of Escherichia coli are categorized as pathogenic bacteria and alternative antimicrobials including bacteriophages for controlling these bacteria have been studied. In this study we screened antimicrobial candidates that present synergistic inhibition of the growth of E. coli DH5α as a model when co-treated with the bacteriophage ECP27 to target the bacteria. As candidates, CaCl2, lactic acid, and citric acid were tested. CaCl2 showed a synergistic inhibition against the strain by dose-dependent manner at 6 h of incubation but the viable cell count was recovered at 12 h. However, lactic acid and citric acid at 30 mM concentration showed synergistic inhibitions at 6 h of incubation and cleared the viable cells of E. coli DH5α at 12 h when co-treated with the bacteriophage even though lactic acid or citric acid alone was effective. Therefore, co-treatment using the bacteriophage and organic acids such as lactic acid and citric acid can be a solution for synergistic inhibition of the growth of E. coli.

일부 대장균 균주는 독성을 가지고 있으며 이들을 제어하기 위해 박테리오파지와 같은 대체 항균물질에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 E. coli DH5α 균주를 모델로 이 균주의 생육을 억제하는 박테리오파지 ECP27과 병용처리했을 때 상승효과를 나타낼 수 있는 항균물질을 탐색하였다. 후보물질로는 CaCl2, 젖산, 구연산이 사용되었다. CaCl2의 경우 6시간째 농도 의존적으로 생육억제 상승효과가 나타났으나 12시간째 E. coli DH5α의 생균수가 회복되는 추세를 보였다. 그러나 30 mM 농도에서 젖산과 구연산은 박테리오파지 ECP27과 병용처리 했을 때 E. coli DH5α의 생육저해에 대하여 6시간째 상승효과를 보였으며 12시간째 생균수가 검출되지 않았다. 또한 젖산과 구연산을 단독으로 처리했을 때 12시간째 E. coli DH5α의 생균수가 확인되지 않아 독자적으로도 항균력이 우수하였다. 따라서 박테리오파지와 유기산을 병용 처리하는 것은 대장균의 생육을 효과적으로 억제하는 좋은 전략이 될 수 있을 것이다.

Keywords

References

  1. Saxena, T., Kaushik, P., Mohan, M.K., Prevalence of E. coli O157: H7 in water sources: an overview on associated diseases, outbreaks and detection methods. Diagn. Microbiol. Infect. Dis. 82, 249-264 (2015). https://doi.org/10.1016/j.diagmicrobio.2015.03.015
  2. Farber, J.M., Sanders, G.W., Johnston, M.A., A survey of various foods for the presence of Listeria species. J. Food Prot. 52, 456-458 (1989). https://doi.org/10.4315/0362-028X-52.7.456
  3. Nataro, J.P., Kaper, J.B., Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142-201 (1998). https://doi.org/10.1128/CMR.11.1.142
  4. Abuladze, T., Li, M., Menetrez, M.Y., Dean, T., Senecal, A., Sulakvelidze, A., Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl. Environ. Microbiol. 74, 6230-6238 (2008). https://doi.org/10.1128/AEM.01465-08
  5. Zhao, T., Zhao, P., West, J.W., Bernard, J.K., Cross, H.G., Doyle, M.P., Inactivation of enterohemorrhagic Escherichia coli in rumen content or feces-contaminated drinking water for cattle. Appl. Environ. Microbiol. 72, 3268-3273 (2006). https://doi.org/10.1128/AEM.72.5.3268-3273.2006
  6. Dixon, B., Antibiotics as growth promoters: risks and alternatives. ASM news. 66, 264 (2000).
  7. Jack, A.H., Robert G.A., Carlos, F.A., Do antibiotics maintain antibiotic resistance? Drug Discov. Today. 5, 195-204 (2000). https://doi.org/10.1016/S1359-6446(00)01483-5
  8. Yoo, Y.A., Kim, M.S., Kim, K.S., Park, S.H., Jung, S.K., Antimicrobial resistance and implicated genes of E. coli isolated from commercial and cooked foods in Seoul. J. Food Hyg. Saf. 25, 220-225 (2010).
  9. Fischetti, V.A., Exploiting what phage have evolved to control gram-positive pathogens. Bacteriophage. 1, 188-194 (2011). https://doi.org/10.4161/bact.1.4.17747
  10. Kazmierczak, Z., Gorski, A., Dabrowska, K., Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses. 6, 2551-2570 (2014). https://doi.org/10.3390/v6072551
  11. Yosef, I., Manor, M., Kiro, R., Qimron, U., Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. 112, 7267-7272 (2015). https://doi.org/10.1073/pnas.1500107112
  12. Burrowes, B., Harper, D.R., Anderson, J., McConville, M., Enright, M.C., Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev. Antiinfect. Ther. 9, 775-785 (2011). https://doi.org/10.1586/eri.11.90
  13. Kunisaki, H., Tanji, Y., Intercrossing of phage genomes in a phage cocktail and stable coexistence with Escherichia coli O157:H7 in anaerobic continuous culture. Appl. Microbiol. Biotechnol. 85, 1533-1540 (2010). https://doi.org/10.1007/s00253-009-2230-2
  14. Yeh, Y., de Moura, F.H., Van Den Broek, K., de Mello, A.S., Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci. 139, 44-48 (2018) https://doi.org/10.1016/j.meatsci.2018.01.007
  15. Valerio, N., Oliveira, C., Jesus, V., Branco, T., Pereira, C., Moreirinha, C., Almeida, A., Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res. 240, 8-17 (2017). https://doi.org/10.1016/j.virusres.2017.07.015
  16. Komora, N., Maciel, C., Pinto, C.A., Ferreira, V., Brandao, T.R.S., Saraiva, J.M.A., Castro, S.M., Teixeira, P., Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiol. 86, 103315 (Epub)