DOI QR코드

DOI QR Code

Development of an IoT Device for Detecting Escherichia coli from Various Agri-Foods and Production Environments

IoT 적용 대장균 검출기 개발과 농식품 및 생산환경에 적용

  • Nguyen, Bao Hung (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Chu, Hyeonjin (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Won-Il (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hwang, Injun (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Hyun-Ju (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Hwangyong (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ryu, Kyoungyul (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Se-Ri (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration)
  • 웅웬바오훙 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 추현진 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김원일 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 황인준 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김현주 (농촌진흥청 국립식량과학원 기초기반과) ;
  • 김황용 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 류경열 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김세리 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀)
  • Received : 2019.09.18
  • Accepted : 2019.11.19
  • Published : 2019.12.30

Abstract

To detect Escherichia coli from agri-food and production environments, a device based on IoT (internet of things) technology that can check test results in real time on a mobile phone has been developed. The efficiency of the developed device, which combines an incubator equipped with a UV lamp, a high-resolution camera and software to detect E. coli in the field, was evaluated by measuring the device's temperature, detection limit, and detection time. The device showed a difference between its programmed temperature setting and actual temperature of about 1.0℃. In a detection limit test performed with a single-colony inoculation, a color change to yellow and a florescent signal were detected after 12 and 15 h incubations, respectively. The incubation time also decreased along with increasing bacteria levels. When applying the developed method and device to various samples, including utensils, gloves, irrigation water, seeds, and vegetables, detection rates of E. coli using the device were higher than those of the Korean Food Code method. These results show that the developed protocol and device can efficiently detect E. coli from agri-food production environments and vegetables.

농식품과 생산환경에서 대장균 오염여부를 휴대 전화에서 실시간으로 결과를 확인할 수 있는 IoT 기반 스마트 대장균 검출 장치를 개발하였다. 개발된 대장균 검출기는 온도 조절부, UV 램프, 고해상도 카메라 및 검출 여부를 판단할 수 있는 소프트웨어로 구성된 장치이다. 검출기의 성능을 평가하기 위하여 온도, 대장균 검출 시간 및 검출한계를 측정하였는데, 개발 된 장치의 설정 온도와 실제 온도의 차이는 약 1.0℃ 이내 였다. 또한 검출시간은 1CFU / 100 mL일 때 15 시간이었고, 대장균 오염농도가 증가할수록 검출시간이 감소하였다. 개발된 스마트 대장균 검출기를 기구, 장갑, 관개 수, 종자 및 채소를 포함한 다양한 시료에 적용했을 때, 대장균의 검출율은 식품공전법으로 분석하였을 때보다 높았다. 따라서 개발된 대장균 검출기술은 농식품 및 생산환경에서 대장균을 효율적으로 검출할 수 있을 것으로 판단된다.

Keywords

References

  1. Ministry of food and drug safety, (2019, September 5). Statistics of food borne outbreaks. Retrieved from: http://foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat
  2. Kim, S.J., Sun, S.H., Min, K.J., Yoon, K.S., Microbiological Hazard Analysis and Verification of Critical Control Point (CCP) in a Fresh-Cut Produce Processing Plant. J. East Asian Soc. Dietary Life. 21, 392-400 (2011).
  3. Manfreda, G., Cesare, A.D., Novel food trends and climate changes: impact on emerging food-borne bacterial pathogens. Curr. Opin. Food Sci. 8, 99-103 (2016). https://doi.org/10.1016/j.cofs.2016.04.007
  4. Metza, M., Sheehana, J., Feng, P.C.H., Use of indicator bacteria for monitoring sanitary quality of raw milk cheeses-A literature review. Food Microbiol. 85, 103283 (2020). https://doi.org/10.1016/j.fm.2019.103283
  5. Ministry of food and drug safety, (2018, March 20). Chapter 5. Food Standards and Specifications, Korean Food code. Retrieved from: http://www.foodsafetykorea.go.kr/foodcode/
  6. Ministry of food and drug safety, (2018, March 20). 4.8. Method for detection of Escherichia coli, Korean Food code. Retrieved from: http://www.foodsafetykorea.go.kr/foodcode/
  7. Venkateswaran, K., Murakoshi, A., Satake, M., Comparison of commercially available kits with standard methods for the detection of coliforms and Escherichia coli in foods. Appl. Environ. Microbiol. 62, 2236-2243 (1996). https://doi.org/10.1128/AEM.62.7.2236-2243.1996
  8. Carner, N., Carroll, Z.S., Long, S.C., A comparison of rapid bacterial methods to U.S. EPA-approved methods for biosolids. Water Environ. Res. 85, 643-9 (2013). https://doi.org/10.2175/106143013X13596524515942
  9. Ministry of environment, 2017, Escherichia-Enzyme substrate method, Water pollution test criteria. Sejong-si, pp. 1160-1163.
  10. Berger, S., Ability of the colilert method to recover oxidantstressed Escherichia coli. Lett. Appl. Microbiol. 13, 247-250 (1991). https://doi.org/10.1111/j.1472-765X.1991.tb00620.x
  11. Covert, T.C., Rice, E.W., Johnson, S.A., Berman, D., Johnson, C.H., Mason, P.J., Comparing defined-substrate coliform tests for the detection of Escherichia coli in water. J. Am. Water Works Assoc. 84, 98-104 (1992).
  12. Frampton, E., Restaino, L., Methods for Escherichia coli identification in food, water and clinical samples based on beta-glucuronidase detection. J. Appl. Bacteriol. 74, 223-233 (1993). https://doi.org/10.1111/j.1365-2672.1993.tb03019.x
  13. Kawasaki, S., Nazuka, E., Bari, M.L., Amano, Y., Yoshida, M., Isshiki, K., Comparison of traditional culture method with DOX system for detecting coliform and Escherichia coli from vegetables. Food Sci. Technol. Res. 9, 304-308 (2003). https://doi.org/10.3136/fstr.9.304
  14. Eccles, J., Searle, R., Holt, D., Dennis, P., A comparison of methods used to enumerate Escherichia coli in conventionally treated sewage sludge. J. Appl. Microbiol. 96, 375-383 (2004). https://doi.org/10.1046/j.1365-2672.2004.02165.x
  15. Muirhead, R., Littlejohn, R., Bremer, P., Evaluation of the effectiveness of a commercially available defined substrate medium and enumeration system for measuring Escherichia coli numbers in faeces and soil samples. Lett. Appl. Microbiol. 39, 383-387 (2004). https://doi.org/10.1111/j.1472-765X.2004.01604.x
  16. Yeom, S.C., Sample analysis system using enzyme coloring method. Korea Patent. 10-2015-0068755 (2015).
  17. Lee, O.J., Eschericha coli continuous culture detection system in water sample. Korea Patent. 10-2014-1465900 (2014).
  18. Kilian, M., Bulow P., Rapid identification of Enterobacteriaceae. II. Use of ${\beta}$-glucuronidase detecting agar medium (PGUA) for the identification of E. coli in primary cultures of urine samples. Acta Pathol. Microbiol. Scand. B. 87, 271-276 (1979).
  19. Landre, J.P., Gavriel, A.A., Lamb, A.J., False-positive coliform reaction mediated by Aeromonas in the Colilert defined substrate technology system. Lett. Appl. Microbiol. 26, 352--354 (1998). https://doi.org/10.1046/j.1472-765X.1998.00347.x
  20. Petzel, J.P., Hartman, P.A., A note on starch hydrolysis and ${\beta}$-glucuronidase activity among flavobacteria. J. Appl. Bacteriol. 61, 421-426 (1986). https://doi.org/10.1111/j.1365-2672.1986.tb04306.x
  21. Ralovich, B., Ibrahim, G.A. M., Fabian, A., Herpay, M., What is the diagnostic value of ${\beta}$-D-glucuronidase (BDG) activity of bacteria using fluorocult ECD agar for their cultivation. Acta Microbiol. Hung. 38, 147-154 (1991).
  22. Yun, B.H., An, H.M., Shim, W.B., Kim, W.I., Hung, N.B., Han, S.H., Kim, H.J., Lee, S.D., Kim, S.R., Development of a screening method and device for the detection of Escherichia coli from agri-food production environments and fresh produce. J. Microbiol. Biotechnol. 27, 2145-2154 (2017).
  23. Julian, T.R., Islam, M.A., Pickering, A.J., Roy, S., Fuhrmeister, E.R., Ercumen, A., Harris, A., Bishai, J., Schwab, K.J., Genotypic and phenotypic characterization of Escherichia coli isolates from feces, hands, and soils in rural Bangladesh via the Colilert Quanti-Tray system. Appl. Environ. Microbiol. 81, 1735-1743 (2015). https://doi.org/10.1128/AEM.03214-14
  24. Conner, D.E., Kotrola, J.S., Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl. Environ. Microbiol. 61, 382-385 (1995). https://doi.org/10.1128/AEM.61.1.382-385.1995
  25. Park, S.H., Ryu, S.R., Kang, D.H., Improved selective and differential medium for isolation of Escherichia coli O157:H7. J. Clin. Microbiol. 49, 405-408 (2011). https://doi.org/10.1128/JCM.01359-10
  26. Bachrouri, M., Quinto, E.J., Mora, M.T., Survival of Escherichia coli O157:H7 during storage of yogurt at different temperatures. J. Food Sci. 67, 1899-1903 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb08743.x