References
- Salyers AA, Leedle JA. 1983. Carbohydrate metabolism in the human colon, pp. 129-146. In Hentges D (ed.), Human intestinal microflora in health and disease, 1st Ed. Elsevier Academic Press, New York.
- Fuentes-Zaragoza E, Sanchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernandez-Lopez J, et al. 2011. Resistant starch as prebiotic: a review. Starch-Starke. 63: 406-415. https://doi.org/10.1002/star.201000099
- Bird A, Conlon M, Christophersen C, Topping D. 2010. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Mirbobes 1: 423-431. https://doi.org/10.3920/BM2010.0041
- Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, et al. 1998. Starch production and industrial use. J. Sci. Food Agric. 77: 289-311. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D
- Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81: 219-231. https://doi.org/10.1016/S0308-8146(02)00416-8
- Imberty A, Buléon A, Tran V, Peerez S. 1991. Recent advances in knowledge of starch structure. Starch-Starke 43: 375-384. https://doi.org/10.1002/star.19910431002
- Raigond P, Ezekiel R, Raigond B. 2015. Resistant starch in food: a review. J. Sci. Food Agric. 95: 1968-1978. https://doi.org/10.1002/jsfa.6966
- Bello-Perez LA, Paredes-Lopez O. 2009. Starches of some food crops, changes during processing and their nutraceutical potential. Food Eng. Rev. 1: 50. https://doi.org/10.1007/s12393-009-9004-6
- Benmoussa M, Moldenhauer KA, Hamaker BR. 2007. Rice amylopectin fine structure variability affects starch digestion properties. J. Agric. Food Chem. 55: 1475-1479. https://doi.org/10.1021/jf062349x
- Sang Y, Bean S, Seib PA, Pedersen J, Shi Y-C. 2008. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 56: 6680-6685. https://doi.org/10.1021/jf800577x
- Themeier H, Hollmann J, Neese U, Lindhauer M. 2005. Structural and morphological factors influencing the quantification of resistant starch II in starches of different botanical origin. Carbohydr. Polym. 61: 72-79. https://doi.org/10.1016/j.carbpol.2005.02.017
-
Heitmann T, Wenzig E, Mersmann A. 1997. Characterization of three different potato starches and kinetics of their enzymatic hydrolysis by an
${\alpha}$ -amylase. Enzyme Microb. Technol. 20: 259-267. https://doi.org/10.1016/S0141-0229(96)00121-4 -
Kong BW, Kim JI, Kim MJ, Kim JC. 2003. Porcine pancreatic
${\alpha}$ -amylase hydrolysis of native starch granules as a function of granule surface area. Biotechnol. Prog. 19: 1162-1166. https://doi.org/10.1021/bp034005m - Tester RF, Karkalas J, Qi X. 2004. Starch structure and digestibility enzyme-substrate relationship. Worlds Poult. Sci. J. 60: 186-195. https://doi.org/10.1079/WPS20040014
-
Bozic N, Loncar N, Slavic MS, Vujcic Z. 2017. Raw starch degrading
${\alpha}$ -amylases: an unsolved riddle. Amylase 1: 12-25. https://doi.org/10.1515/amylase-2017-0002 - Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, et al. 2010. Recent advances in microbial raw starch degrading enzymes. Appl. Biochem. Biotechnol. 160: 988-1003. https://doi.org/10.1007/s12010-009-8579-y
- Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6: 1535-1543. https://doi.org/10.1038/ismej.2012.4
- Jung DH, Seo DH, Kim GY, Nam YD, Song EJ, Yoon S, et al. 2018. The effect of resistant starch (RS) on the bovine rumen microflora and isolation of RS-degrading bacteria. Appl. Microbiol. Biotechnol. 102: 4927-4936. https://doi.org/10.1007/s00253-018-8971-z
- Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214. https://doi.org/10.1089/10665270050081478
- Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72. https://doi.org/10.1016/j.ab.2004.12.001
- DuBois M, Gilles KA, Hamilton JK, Rebers Pt, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Martens EC, Koropatkin NM, Smith TJ, Gordon JI. 2009. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284: 24673-24677. https://doi.org/10.1074/jbc.R109.022848
- Sun Y, Sun T, Wang F, Zhang J, Li C, Chen X, et al. 2013. A polysaccharide from the fungi of Huaier exhibits anti-tumor potential and immunomodulatory effects. Carbohydr. Polym. 92: 577-582. https://doi.org/10.1016/j.carbpol.2012.09.006
- Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907-916. https://doi.org/10.1038/ni1001-907
- Young SL, Simon MA, Baird MA, Tannock GW, Bibiloni R, Spencely K, et al. 2004. Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin. Diagn. Lab. Immunol. 11: 686-690. https://doi.org/10.1128/CDLI.11.4.686-690.2004
- Rodríguez-Sanoja R, Oviedo N, Sanchez S. 2005. Microbial starch-binding domain. Curr. Opin. Microbiol. 8: 260-267. https://doi.org/10.1016/j.mib.2005.04.013
-
Peng H, Zheng Y, Chen M, Wang Y, Xiao Y, Gao Y. 2014. A starch-binding domain identified in
${\alpha}$ -amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett. 588: 1161-1167. https://doi.org/10.1016/j.febslet.2014.02.050 - Guillen D, Sanchez S, Rodriguez-Sanoja R. 2010. Carbohydratebinding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol. 85: 1241-1249. https://doi.org/10.1007/s00253-009-2331-y
- Jiang S, Wells CD, Roach PJ. 2011. Starch-binding domaincontaining protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413: 420-425. https://doi.org/10.1016/j.bbrc.2011.08.106
- D'Argenio V, Salvatore F. 2015. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 451: 97-102. https://doi.org/10.1016/j.cca.2015.01.003
- Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, et al. 2015. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol. Microbiol. 95: 209-230. https://doi.org/10.1111/mmi.12859
- Ze X, David YB, Laverde-Gomez JA, Dassa B, Sheridan PO, Duncan SH, et al. 2015. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. MBio. 6: e01058-01015.
- Shin HS, Eom JE, Shin DU, Yeon SH, Lim SI, Lee SY. 2018. Preventive effects of a probiotic mixture in an ovalbumininduced food allergy model. J. Microbiol. Biotechnol. 28: 65-76. https://doi.org/10.4014/jmb.1708.08051
- Sim I, Park KT, Kwon G, Koh JH, Lim YH. 2018. Probiotic potential of Enterococcus faecium isolated from chicken cecum with immunomodulating activity and promoting longevity in Caenorhabditis elegans. J. Microbiol. Biotechnol. 28: 883-892. https://doi.org/10.4014/jmb.1802.02019
- Isolauri E, Sütas Y, Kankaanpaa P, Arvilommi H, Salminen S. 2001. Probiotics: effects on immunity. Am. J. Clin. Nutr. 73: 444s-450s.
- Medina M, Izquierdo E, Ennahar S, Sanz Y. 2007. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin. Exp. Immunol. 150: 531-538. https://doi.org/10.1111/j.1365-2249.2007.03522.x
Cited by
- Resistant starch, microbiome, and precision modulation vol.13, pp.1, 2019, https://doi.org/10.1080/19490976.2021.1926842
- Association between physical activity and changes in intestinal microbiota composition: A systematic review vol.16, pp.2, 2021, https://doi.org/10.1371/journal.pone.0247039
- Structure and substrate recognition by the Ruminococcus bromii amylosome pullulanases vol.213, pp.3, 2021, https://doi.org/10.1016/j.jsb.2021.107765
- Enzymatic analysis of truncation mutants of a type II pullulanase from Bifidobacterium adolescentis P2P3, a resistant starch-degrading gut bacterium vol.193, pp.no.pb, 2019, https://doi.org/10.1016/j.ijbiomac.2021.10.193
- Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum vol.154, 2019, https://doi.org/10.1016/j.lwt.2021.112572