DOI QR코드

DOI QR Code

Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity

  • Jung, Dong-Hyun (Bacteria Research Team, Nakdonggang National Institute of Biological Resources) ;
  • Kim, Ga-Young (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Kim, In-Young (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Seo, Dong-Ho (Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Nam, Young-Do (Research Group of Healthcare, Korea Food Research Institute) ;
  • Kang, Hee (Humanitas College, Kyung Hee University) ;
  • Song, Youngju (Department of Biomedical Science and Technology, Graduate School, Kyung Hee University) ;
  • Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
  • Received : 2019.09.09
  • Accepted : 2019.10.18
  • Published : 2019.12.28

Abstract

Resistant starch (RS) is metabolized by gut microbiota and involved in the production of short-chain fatty acids, which are related to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a topic of interest, and research on gut bacteria that can decompose RS is also important. The objectives in this study were 1) to isolate a human gut bacterium having strong degradation activity on non-gelatinized RS, 2) to characterize its RS-degrading characteristics, and 3) to investigate its probiotic effects, including a growth stimulation effect on other gut bacteria and an immunomodulatory effect. Bifidobacterium adolescentis P2P3 showing very strong RS granule utilization activity was isolated. It can attach to RS granules and form them into clusters. It also utilizes high-amylose corn starch granules up to 63.3%, and efficiently decomposes other various types of commercial RS without gelatinization. In a coculture experiment, Bacteroides thetaiotaomicron ATCC 29148, isolated from human feces, was able to grow using carbon sources generated from RS granules by B. adolescentis P2P3. In addition, B. adolescentis P2P3 demonstrated the ability to stimulate secretion of Th1 type cytokines from mouse macrophages in vitro that was not shown in other B. adolescentis. These results suggested that B. adolescentis P2P3 is a useful probiotic candidate, having immunomodulatory activity as well as the ability to feed other gut bacteria using RS as a prebiotic.

Keywords

References

  1. Salyers AA, Leedle JA. 1983. Carbohydrate metabolism in the human colon, pp. 129-146. In Hentges D (ed.), Human intestinal microflora in health and disease, 1st Ed. Elsevier Academic Press, New York.
  2. Fuentes-Zaragoza E, Sanchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernandez-Lopez J, et al. 2011. Resistant starch as prebiotic: a review. Starch-Starke. 63: 406-415. https://doi.org/10.1002/star.201000099
  3. Bird A, Conlon M, Christophersen C, Topping D. 2010. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Mirbobes 1: 423-431. https://doi.org/10.3920/BM2010.0041
  4. Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, et al. 1998. Starch production and industrial use. J. Sci. Food Agric. 77: 289-311. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D
  5. Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81: 219-231. https://doi.org/10.1016/S0308-8146(02)00416-8
  6. Imberty A, Buléon A, Tran V, Peerez S. 1991. Recent advances in knowledge of starch structure. Starch-Starke 43: 375-384. https://doi.org/10.1002/star.19910431002
  7. Raigond P, Ezekiel R, Raigond B. 2015. Resistant starch in food: a review. J. Sci. Food Agric. 95: 1968-1978. https://doi.org/10.1002/jsfa.6966
  8. Bello-Perez LA, Paredes-Lopez O. 2009. Starches of some food crops, changes during processing and their nutraceutical potential. Food Eng. Rev. 1: 50. https://doi.org/10.1007/s12393-009-9004-6
  9. Benmoussa M, Moldenhauer KA, Hamaker BR. 2007. Rice amylopectin fine structure variability affects starch digestion properties. J. Agric. Food Chem. 55: 1475-1479. https://doi.org/10.1021/jf062349x
  10. Sang Y, Bean S, Seib PA, Pedersen J, Shi Y-C. 2008. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 56: 6680-6685. https://doi.org/10.1021/jf800577x
  11. Themeier H, Hollmann J, Neese U, Lindhauer M. 2005. Structural and morphological factors influencing the quantification of resistant starch II in starches of different botanical origin. Carbohydr. Polym. 61: 72-79. https://doi.org/10.1016/j.carbpol.2005.02.017
  12. Heitmann T, Wenzig E, Mersmann A. 1997. Characterization of three different potato starches and kinetics of their enzymatic hydrolysis by an ${\alpha}$-amylase. Enzyme Microb. Technol. 20: 259-267. https://doi.org/10.1016/S0141-0229(96)00121-4
  13. Kong BW, Kim JI, Kim MJ, Kim JC. 2003. Porcine pancreatic ${\alpha}$-amylase hydrolysis of native starch granules as a function of granule surface area. Biotechnol. Prog. 19: 1162-1166. https://doi.org/10.1021/bp034005m
  14. Tester RF, Karkalas J, Qi X. 2004. Starch structure and digestibility enzyme-substrate relationship. Worlds Poult. Sci. J. 60: 186-195. https://doi.org/10.1079/WPS20040014
  15. Bozic N, Loncar N, Slavic MS, Vujcic Z. 2017. Raw starch degrading ${\alpha}$-amylases: an unsolved riddle. Amylase 1: 12-25. https://doi.org/10.1515/amylase-2017-0002
  16. Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, et al. 2010. Recent advances in microbial raw starch degrading enzymes. Appl. Biochem. Biotechnol. 160: 988-1003. https://doi.org/10.1007/s12010-009-8579-y
  17. Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6: 1535-1543. https://doi.org/10.1038/ismej.2012.4
  18. Jung DH, Seo DH, Kim GY, Nam YD, Song EJ, Yoon S, et al. 2018. The effect of resistant starch (RS) on the bovine rumen microflora and isolation of RS-degrading bacteria. Appl. Microbiol. Biotechnol. 102: 4927-4936. https://doi.org/10.1007/s00253-018-8971-z
  19. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214. https://doi.org/10.1089/10665270050081478
  20. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72. https://doi.org/10.1016/j.ab.2004.12.001
  21. DuBois M, Gilles KA, Hamilton JK, Rebers Pt, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  22. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  23. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. 2009. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284: 24673-24677. https://doi.org/10.1074/jbc.R109.022848
  24. Sun Y, Sun T, Wang F, Zhang J, Li C, Chen X, et al. 2013. A polysaccharide from the fungi of Huaier exhibits anti-tumor potential and immunomodulatory effects. Carbohydr. Polym. 92: 577-582. https://doi.org/10.1016/j.carbpol.2012.09.006
  25. Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907-916. https://doi.org/10.1038/ni1001-907
  26. Young SL, Simon MA, Baird MA, Tannock GW, Bibiloni R, Spencely K, et al. 2004. Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin. Diagn. Lab. Immunol. 11: 686-690. https://doi.org/10.1128/CDLI.11.4.686-690.2004
  27. Rodríguez-Sanoja R, Oviedo N, Sanchez S. 2005. Microbial starch-binding domain. Curr. Opin. Microbiol. 8: 260-267. https://doi.org/10.1016/j.mib.2005.04.013
  28. Peng H, Zheng Y, Chen M, Wang Y, Xiao Y, Gao Y. 2014. A starch-binding domain identified in ${\alpha}$-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett. 588: 1161-1167. https://doi.org/10.1016/j.febslet.2014.02.050
  29. Guillen D, Sanchez S, Rodriguez-Sanoja R. 2010. Carbohydratebinding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol. 85: 1241-1249. https://doi.org/10.1007/s00253-009-2331-y
  30. Jiang S, Wells CD, Roach PJ. 2011. Starch-binding domaincontaining protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413: 420-425. https://doi.org/10.1016/j.bbrc.2011.08.106
  31. D'Argenio V, Salvatore F. 2015. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 451: 97-102. https://doi.org/10.1016/j.cca.2015.01.003
  32. Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, et al. 2015. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol. Microbiol. 95: 209-230. https://doi.org/10.1111/mmi.12859
  33. Ze X, David YB, Laverde-Gomez JA, Dassa B, Sheridan PO, Duncan SH, et al. 2015. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. MBio. 6: e01058-01015.
  34. Shin HS, Eom JE, Shin DU, Yeon SH, Lim SI, Lee SY. 2018. Preventive effects of a probiotic mixture in an ovalbumininduced food allergy model. J. Microbiol. Biotechnol. 28: 65-76. https://doi.org/10.4014/jmb.1708.08051
  35. Sim I, Park KT, Kwon G, Koh JH, Lim YH. 2018. Probiotic potential of Enterococcus faecium isolated from chicken cecum with immunomodulating activity and promoting longevity in Caenorhabditis elegans. J. Microbiol. Biotechnol. 28: 883-892. https://doi.org/10.4014/jmb.1802.02019
  36. Isolauri E, Sütas Y, Kankaanpaa P, Arvilommi H, Salminen S. 2001. Probiotics: effects on immunity. Am. J. Clin. Nutr. 73: 444s-450s.
  37. Medina M, Izquierdo E, Ennahar S, Sanz Y. 2007. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin. Exp. Immunol. 150: 531-538. https://doi.org/10.1111/j.1365-2249.2007.03522.x

Cited by

  1. Resistant starch, microbiome, and precision modulation vol.13, pp.1, 2019, https://doi.org/10.1080/19490976.2021.1926842
  2. Association between physical activity and changes in intestinal microbiota composition: A systematic review vol.16, pp.2, 2021, https://doi.org/10.1371/journal.pone.0247039
  3. Structure and substrate recognition by the Ruminococcus bromii amylosome pullulanases vol.213, pp.3, 2021, https://doi.org/10.1016/j.jsb.2021.107765
  4. Enzymatic analysis of truncation mutants of a type II pullulanase from Bifidobacterium adolescentis P2P3, a resistant starch-degrading gut bacterium vol.193, pp.no.pb, 2019, https://doi.org/10.1016/j.ijbiomac.2021.10.193
  5. Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum vol.154, 2019, https://doi.org/10.1016/j.lwt.2021.112572