References
- He ZQ, Findlay JA. 1991. Constituents of Astragalus membranaceus. J. Nat. Prod. 54: 810-815. https://doi.org/10.1021/np50075a009
- Choudhary MI, Jan S, Abbaskhan A, Musharraf SG, Samreen, Sattar SA, et al. 2008. Cycloartane triterpenoids from Astragalus bicuspis J. Nat. Prod. 71: 1557-1560. https://doi.org/10.1021/np800161j
- Ma XQ, Shi Q, Duan JA, Dong TT, Tsim KW. 2002. Chemical analysis of Radix Astragali (Huangqi) in China: a comparison with its adulterants and seasonal variations. J. Agric. Food Chem. 50: 4861-4866. https://doi.org/10.1021/jf0202279
- Qi LW, Yu QT, Li P, Li SL, Wang YX, Sheng LH, et al. 2006. Quality evaluation of Radix Astragali through a simultaneous determination of six major active isoflavonoids and four main saponins by high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors. J. Chromatogr. A. 1134: 162-169. https://doi.org/10.1016/j.chroma.2006.08.085
- Peng J, Dong F, Qi Y, Han X , Xu Y, Xu L, et al. 2008. Preparative separation of four triterpene saponins from radix astragali by high-speed counter. Phytochem. Anal. 19: 212-217. https://doi.org/10.1002/pca.1011
- Li H, Zhang Y, Min J, Gao L , Zhang R, Yang Y. 2018. Astragaloside IV attenuates orbital inflammation in Graves' orbitopathy through suppression of autophagy. Inflamm. Res. 67: 117-127. https://doi.org/10.1007/s00011-017-1100-0
- Lei L, Hou X, Xu R, Chang L, Tu M. 2017. Research review on the pharmacological effects of astragaloside IV. Fundam Clin. Pharmacol. 31: 17-36. https://doi.org/10.1111/fcp.12232
- Cao YL, Wen-Lan LI, Wei LY, Liu XY, Zhi-Hui LI, Wei-Guo HE, et al. 2012. Anti-aging function of Cycloastragenol in aging mice induced by D-galactose. Zhongguo Shiyan Fangjixue Zazhi. 18: 208-211.
- Ip FC, Ng YP, An HJ, Dai Y , Pang HH, Hu YQ, et al. 2014. Cycloastragenol is a potent telomerase activator in neuronal cells: implications for depression management. Neurosignals 22: 52-63. https://doi.org/10.1159/000365290
- Valenzuela HF, Fuller T, Edwards J, Finger D, Molgora B. 2009. Cycloastragenol extends T cell proliferation by increasing telomerase activity. J. Immunol. 182: 90-30.
- Wang L, Chen Y. 2017. Efficient biotransformation of Astragaloside IV to Cycloastragenol by Bacillus sp. LG-502. Appl. Biochem. Biotechnol. 183: 1488-1502. https://doi.org/10.1007/s12010-017-2517-1
- Feng LM, Lin XH, Huang FX, Cao J, Qiao X, Guo DA, et al. 2014. Smith degradation, an efficient method for the preparation of cycloastragenol from astragaloside IV. Fitoterapia 95: 42-50. https://doi.org/10.1016/j.fitote.2014.02.014
- Zhang SD, Jun-Kun LU, Yan JZ, Hui Z. 2016. Research progress of the preparation technology and pharmacological effect of cycloastragenol. Chinese J. New Drugs 16: 1872-1875.
- And SD, Rosazza JPN. 2006. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69: 499-508. https://doi.org/10.1021/np0504659
-
Pei J, Xie J, Yin R, Zhao L, Ding G, Wang Z, et al. 2015. Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by GH3
${\beta}$ -glucosidase from Thermotoga thermarum DSM 5069T. J. Mol. Catal. B: Enzymatic. 113: 104-109. https://doi.org/10.1016/j.molcatb.2014.12.012 -
Xie J , Zhao D, Zhao L, Pei J , Xiao W, Ding G, et al. 2015. Overexpression and characterization of a
$Ca^{2+}$ activated thermostable${\beta}$ -glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity. J. Ind. Microbiol. Biotechnol. 42: 839-850. https://doi.org/10.1007/s10295-015-1608-7 - Shah S, Tan H, Sultan S, Faridz M, Shah M, Nurfazilah S, et al. 2014. Microbial-catalyzed biotransformation of multifunctional triterpenoids derived from phytonutrients. Int. J. Mol. Sci. 15: 12027-12060. https://doi.org/10.3390/ijms150712027
- Shi H , Li X, Gu HX, Zhang Y , Huang Y J, Wang LL, et al. 2013. Biochemical properties of a novel thermostable and highly xylose-tolerant beta-xylosidase/alpha-arabinosidase from Thermotoga thermarum. Biotechnol. Biofuels 6: 27. https://doi.org/10.1186/1754-6834-6-27
- Benassi VM, de Lucas RC, Jorge JA, Polizeli MDTD. 2014. Screening of thermotolerant and thermophilic fungi aiming beta-xylosidase and arabinanase production. Braz. J. Microbiol. 45: 1459-1467. https://doi.org/10.1590/S1517-83822014000400042
-
Patel H , Kumar AK, Shah A. 2018. Purification and characterization of novel bi-functional GH3 family
${\beta}$ -xylosidase/${\beta}$ -glucosidase from Aspergillus niger ADH-11. Int. J. Biol. Macromol. 109: 1260-1269. https://doi.org/10.1016/j.ijbiomac.2017.11.132 -
Zhao L, Xie J, Zhang X, Cao F, Pei J. 2013. Overexpression and characterization of a glucose-tolerant
${\beta}$ -glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. J. Mol. Catal. B: Enzym. 95: 62-69. https://doi.org/10.1016/j.molcatb.2013.05.027 - Jonathan MC, Demartini J, Thans SVS, Hommes R, Kabel MA. 2017. Characterisation of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammoniapretreated corn stover for ethanol production. Biotechnol. Biofuels 10: 112. https://doi.org/10.1186/s13068-017-0803-3
- Consolacion A, Manuel RSF, Bruno D. 2016. Enzymatic hydrolysis of biomass from wood. Microb. Biotechnol. 9: 149-156. https://doi.org/10.1111/1751-7915.12346
-
Shin KC, Seo MJ, Oh DK. 2014. Characterization of
${\beta}$ -xylosidase from Thermoanaerobacterium thermosaccharolyticum and its application to the production of ginsenosides Rg1 and Rh1 from notoginsenosides R1 and R2. Biotechnol. Lett. 36: 2275-2281. https://doi.org/10.1007/s10529-014-1604-4 -
Zhong FL, Ma R, Jiang M, Dong WW, Jiang J, Wu S, et al. 2016. Cloning and characterization of ginsenoside-hydrolyzing
${\beta}$ -glucosidase from Lactobacillus brevis that transforms Ginsenosides Rb1 and F2 into Ginsenoside Rd and Compound K. J. Microbiol. Biotechnol. 26: 1661-1667. https://doi.org/10.4014/jmb.1605.05052 -
Li Q, Wu T, Qi Z, Zhao L, Pei J, Tang F. 2018. Characterization of a novel thermostable and xylose-tolerant GH 39
${\beta}$ -xylosidase from Dictyoglomus thermophilum. BMC Biotechnol. 18: 29. https://doi.org/10.1186/s12896-018-0440-3 - Laemmli UK. 1970. Most commonly used discontinuous buffer system for SDS electrophoresis. Nature 227: 680-688. https://doi.org/10.1038/227680a0
-
Huang CH, Sun Y, Ko TP, Chen CC, Zheng Y, Chan HC, et al. 2012. The substrate/product-binding modes of a novel GH120
${\beta}$ -xylosidase (XylC) from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biochem. J. 448: 401-407. https://doi.org/10.1042/BJ20121359 -
Wan HD, Li D. 2015. Highly efficient biotransformation of ginsenoside Rb1 and Rg3 using
${\beta}$ -galactosidase from Aspergillus sp. RSC Adv. 5: 78874-78879. https://doi.org/10.1039/C5RA11519A -
Bhatia Y, Mishra S, Bisaria VS. 2002. Microbial
${\beta}$ -glucosidases: cloning, properties, and applications. Crit. Rev. Biotechnol. 22: 375-407. https://doi.org/10.1080/07388550290789568 -
Liu Y, Li R, Wang J, Zhang X , Jia R , Gao Y, et al. 2017. Increased enzymatic hydrolysis of sugarcane bagasse by a novel glucose- and xylose-stimulated
${\beta}$ -glucosidase from Anoxybacillus flavithermus subsp. yunnanensis E13T. BMC Biochem. 18: 4. https://doi.org/10.1186/s12858-017-0079-z - Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. 2013. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127: 500-507. https://doi.org/10.1016/j.biortech.2012.09.012
- Xiao Z, Zhang X, Gregg DJ, Saddler JN. 2004. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 116: 1115-1126.
-
Yang X, Shi P , Huang H , Luo H , Wang Y, Zhang W, et al. 2014. Two xylose-tolerant GH43 bifunctional
${\beta}$ -xylosidase/${\alpha}$ -arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem. 148: 381-387. https://doi.org/10.1016/j.foodchem.2013.10.062 -
Pei J, Wu T, Yao T, Zhao L, Ding G, Wang Z, et al. 2017. Biotransformation of Ginsenosides Re and Rg 1 into Rg 2 and Rh 1 by thermostable
${\beta}$ -glucosidase from Thermotoga thermarum. Chem. Nat. Compd. 53: 1-6. https://doi.org/10.1007/s10600-017-1897-3 -
Ge L, Chen A, Pei J , Zhao L, Fang X, Gang D, et al. 2017. Enhancing the thermostability of
${\alpha}$ -L-rhamnosidase from Aspergillus terreus and the enzymatic conversion of rutin to isoquercitrin by adding sorbitol. BMC Biotechnol. 17: 21. https://doi.org/10.1186/s12896-017-0342-9 -
Cao L C, Wang ZJ, Ren GH, Kong W, Li L, Xie W, et al. 2015. Engineering a novel glucose-tolerant
${\beta}$ -glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol. Biofuels 8: 202. https://doi.org/10.1186/s13068-015-0383-z -
Zimbardi A, Sehn C, Meleiro L, Souza F, Masui D, Nozawa M, et al. 2013. Optimization of
${\beta}$ -glucosidase,${\beta}$ -xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int. J. Mol. Sci. 14: 2875-2902. https://doi.org/10.3390/ijms14022875 -
Long L, Shi H, Li X, Zhang Y, Hu J, Wang F. 2016. Cloning, purification, and characterization of a thermostable
${\beta}$ -glucosidase from Thermotoga thermarum DSM 5069. Bioresources 11: 3165-3177. - Yang JK, Yoon HJ, Ahn HJ, Lee B I, Pedelacq JD, Liong EC, et al. 2004. Crystal structure of beta-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. J. Mol. Biol. 335: 155-165. https://doi.org/10.1016/j.jmb.2003.10.026
-
Colussi F, Silva VMD, Miller I, Cota J, Oliveira LCD, Neto MDO, et al. 2015. Oligomeric state and structural stability of two hyperthermophilic
${\beta}$ -glucosidases from Thermotoga petrophila. Amino Acids 47: 937-948. https://doi.org/10.1007/s00726-015-1923-3 -
Souza FHM, Inocentes RF, Ward RJ, Jorge JA, Furriel RPM. 2013. Glucose and xylose stimulation of a
${\beta}$ -glucosidase from the thermophilic fungus Humicola insolens: a kinetic and biophysical study. J. Mol. Catal. B Enzym. 94: 119-128. https://doi.org/10.1016/j.molcatb.2013.05.012 -
Yang Y, Zhang X, Yin Q, Fang W, Fang Z, Wang X, et al. 2015. A mechanism of glucose tolerance and stimulation of GH1
${\beta}$ -glucosidases. Sci. Rep. 5: 17296. https://doi.org/10.1038/srep17296 - Yao J, Chen QL, Shen AX, Cao W, Liu YH. 2013. A novel feruloyl esterase from a soil metagenomic library with tannase activity. J. Mol. Catal. B Enzym. 95: 55-61. https://doi.org/10.1016/j.molcatb.2013.05.026
-
Rajasree KP, Mathew GM, Pandey A, Sukumaran RK. 2013. Highly glucose tolerant
${\beta}$ -glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. J. Ind. Microbiol. Biotechnol. 40: 967-975. https://doi.org/10.1007/s10295-013-1291-5 - Kitagawa I, Wang H, Takagi A, Fuchida M , Miura I, Yoshikawa M. 2008. Saponin and Sapogenol. XXXIV. Chemical Constituents of Astragali Radix, the Root of Astragalus membranaceus BUNGE. (1). Cycloastragenol, the 9,19-Cycloanostane-type Aglycone of Astragalosides, and the Artifact Aglycone Astragenol. Chem. Pharm. Bull. 31: 689-697. https://doi.org/10.1248/cpb.31.689
-
Shi X , Xie J , Liao S, Wu T, Zhao LG, Ding G, et al. 2017. High-level expression of recombinant thermostable
${\beta}$ -glucosidase in Escherichia coli by regulating acetic acid. Bioresour. Technol. 241: 795-801. https://doi.org/10.1016/j.biortech.2017.05.105
Cited by
- β-Xylosidases: Structural Diversity, Catalytic Mechanism, and Inhibition by Monosaccharides vol.20, pp.22, 2019, https://doi.org/10.3390/ijms20225524