DOI QR코드

DOI QR Code

A Study on the Causal Relationship Between Shipping Freight Rates

해운 운임 간 인과관계에 관한 연구

  • Jeon, JunWoo (Department of East Asian Studies & Logistics, SungKyul University)
  • 전준우 (성결대학교 동아시아물류학부)
  • Received : 2019.11.10
  • Accepted : 2019.12.20
  • Published : 2019.12.28

Abstract

The purpose of the study was to utilize VECM(Vector Error Correction Model) and detect causal relationships among shipping freight rates. Shipping freight rates used in this study were BDI(Baltic Dry Index), HRCI(Howe Robinson Containership Index), WS(World Scale rate) and SCFI(Shanghai Containerized Freight Index). Using weekly data published since August 2nd, 2013 to September 6th, 2019, it was discovered that BDI and WS were heavily influenced by past week's BDI and WS respectively. VECM also found that one percent increase in WS resulted in 0.022% increase in following week's HRCI data. One percent increase in HRCI affects SCFI by 0.77% on the following week. This study believes that finding may help each shipping market of shipping freight rates estimates, thereby encouraging decision markers to exercise discretion and establish best interest decision.

본 연구의 목적은 VECM 모형(Vector Error Correction Model)을 활용해 해운 운임 간 인과관계를 분석하는 것이다. 분석에 사용된 해운 운임은 BDI(Baltic Dry Index), HRCI(Howe Robinson Containership Index), WS(World Scale rate), SCFI(Shanghai Containerized Freight Index)다. 분석 기간은 2013년 8월 2일부터 2019년 9월 6일까지이며 주간 데이터를 활용했다. VECM 모형 분석 결과, BDI는 일주일 전의 BDI에 많은 영향을 받는 것으로 분석되었으며, WS의 1% 상승은 일주일 후의 HRCI를 0.022% 상승시키는 것으로 분석되었다. HRCI 1% 상승은 일주일 후의 SCFI를 0.77% 상승시키며, WS는 일주일 전의 WS에 많은 영향을 받는 것으로 나타났다. 본 연구의 분석 결과는 각 해운시장의 해운 운임 예측에 도움을 주며, 이를 활용하여 의사결정자들이 올바른 의사결정을 할 수 있게 도움을 줄 수 있다고 사료된다.

Keywords

References

  1. B. Geman. (1984). Shipping investment in recession. Institute of Shipping Economics Bremen.
  2. J. W. Jeon & G. T. Yeo. (2017). Study of the Optimal Timing of Container Ship Orders Considering the Uncertain Shipping Environment. The Asian Journal of Shipping and Logistics, 33(2), 85-93. DOI : 10.1016/j.ajsl.2017.06.006
  3. J. Randers. & U. Goluke. (2007). Forecasting turning points in shipping freight rates: lessons from 30 years of practical effort. System Dynamics Review, 23(23), 253-284. https://doi.org/10.1002/sdr.376
  4. A. W. Veenstra & P. H. Franses. (1997). A co-integration approach to forecasting freight rates in the dry bulk shipping sector. Transportation Research Part A: policy and practice, 31(6), 447-458. https://doi.org/10.1016/S0965-8564(97)00002-5
  5. M. G. Kavussanos. & A. H. Alizadeh-M. (2001). Seasonality patterns in dry bulk shipping spot and time charter freight rates. Transportation Research Part E: Logistics and Transportation Review, 37(6), 443-467. DOI : 10.1016/S1366-5545(01)00004-7
  6. G. Dikos. H. S. Marcus, M. P. Papadatos. & V. Papakonstantinou. (2006). Niver lines: a system-dynamics approach to tanker freight modeling. Interfaces, 36(4), 326-341. https://doi.org/10.1287/inte.1060.0218
  7. F. Papailias. D. D. Thomakos & J. Liu, (2017). The Baltic Dry Index: cyclicalities, forecasting and hedging strategies. Empirical Economics, 52(1), 255-282. https://doi.org/10.1007/s00181-016-1081-9
  8. C. Chistè.. & G. Van Vuuren. (2014). Investigating the cyclical behaviour of the dry bulk shipping market. Maritime Policy & Management, 41(1), 1-19. https://doi.org/10.1080/03088839.2013.780216
  9. H. K. Kim., K. D. Sung, J. W. Jeon & G. T. Yeo. (2016). Analysis of the Relationship Between Freight Index and Shipping Company's Stock Price Index, The Journal of Digital Policy & Management, 14(6), 157-165.
  10. H. S. Kim & M. H. Jang, (2013). Analysis of Asymmetric Long-run Equilibrium between Bunker Price and BDI(Baltic Dry-bulk Index). Journal of Korea Port Economic Association, 28(2), 63-79.
  11. H. S. Kim & Y. S. Oh. (2012). Empirical Approaches to Testing the Relationship Between Stock Price and BDI. The Journal of the Korean Association of Shipping Studies, 28(4), 687-702.
  12. J. Angelopoulos. O. Duru. & C. Chlomoudis. (2016). Spectral dynamics of dry cargo shipping markets. theory of long waves-fact or artifac. International Journal of Transport Economics. 43(2), 224-227.
  13. R. F. Engle & C. W. Granger. (1987) Co-integration and Error Correction: Representation, Estimation and Testing. Econometrica, 55, 251-276. DOI : 10.2307/1913236
  14. C. W. Granger. (1988). Some recent development in a concept of causality. Journal of econometrics, 39(2), 199-211. DOI : 10.1016/0304-4076(88)90045-0
  15. H. Geman. & W. O. Geman. (2012). Shipping markets and freight rates: an analysis of the Baltic Dry Index. The Journal of Alternative Investments, 15(1), 98-109. DOI : abs/10.3905/jai.201
  16. R. Scarsi. (2007). The bulk shipping business: market cycles and shipowners' biases. Maritime Policy & Management, 34(6), 577-590. https://doi.org/10.1080/03088830701695305