DOI QR코드

DOI QR Code

HYERS-ULAM-RASSIAS STABILITY OF AN ADDITIVE-QUADRATIC-QUARTIC FUNCTIONAL EQUATION

  • Lee, Yang-Hi (Department of Mathematics Education, Gongju National University of Education)
  • 투고 : 2019.04.10
  • 심사 : 2019.10.10
  • 발행 : 2019.12.25

초록

In this paper, we investigate Hyers-Ulam-Rassias stability of a functional equation f(x + ky) + f(x - ky) - k2f(x + y) - k2f(x - y) + 2(k2 - 1)f(x) + (k2 + k)f(y) + (k2 - k)f(-y) - 2f(ky) = 0.

키워드

참고문헌

  1. J. Baker, A general functional equation and its stability, Proc. Natl. Acad. Sci. 133(6) (2005), 1657-1664.
  2. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  3. A. K. Hassan, J. R. Lee, and C. Park, Non-Archimedean stability of an AQQ functional equation, J. Comput. Anal. Appl. 14 (2012), 211-227.
  4. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  5. M. Mohamadi, Y. J. Cho, C. Park, P. Vetro, and R. Saadati, Random stability of an additive-quadratic-quartic functional equation, J. Inequal. Appl. 2010 (2010), Art. ID 754210, 18 pages.
  6. Choonkil Park, Fuzzy stability of an additive-quadratic-quartic functional equation, J. Inequal. Appl. 2010 (2010), Art. ID 253040, 22 pages
  7. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  8. S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.