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RULED SURFACES IN E3 WITH DENSITY

Mustafa Altın∗, Ahmet Kazan and H.Bayram Karadağ

Abstract. In the present paper, we study curves in E3 with den-

sity eax
2+by2

, where a, b ∈ R not all zero constants and give the
parametric expressions of the curves with vanishing weighted cur-
vature. Also, we create ruled surfaces whose base curves are the
curve with vanishing weighted curvature and the ruling curves are
Smarandache curves of this curve. Then, we give some characteriza-
tions about these ruled surfaces by obtaining the mean curvatures,
Gaussian curvatures, distribution parameters and striction curves
of them.

1. Introduction

In different spaces, the geometry of curves and surfaces is an inter-
esting area for differential geometers for a long time. The curvature of
a curve α(u) = (x(u), y(u), 0) in a plane is an important invariant for a
curve and it is defined as ([13], [17])

(1) κ =
x′(u)y′′(u)− x′′(u)y′(u)(
(x′(u))2 + (y′(u))2

)3/2 .
Also, the Smarandache curves which play an important role in Smara-

ndache geometry have been obtained with the aid of the Frenet frame of a
curve. If we denote TN−Smarandache curve as βTN , TB−Smarandache
curve as βTB, NB−Smarandache curve as βNB and TNB−Smarandache
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curve as βTNB of a curve, then they are given by

βTN (u) =
T (u) +N(u)

‖T (u) +N(u)‖
, βTB(u) =

T (u) +B(u)

‖T (u) +B(u)‖
,

βNB(u) =
N(u) +B(u)

‖N(u) +B(u)‖
and βTNB(u) =

T (u) +N(u) +B(u)

‖T (u) +N(u) +B(u)‖
,

respectively. More information about Smarandache curves can be found
in [1], [2], [18], [19] and etc.

On the other hand, ruled surfaces are one-parameter set of lines and
they have been studied widely in differential geometry. Also, they have
been applied on different areas such as architectural, CAD, electric dis-
charge machining and etc ([4], [15]). A ruled surface is defined as

(2) R := ϕ(u, v) = α(u) + vX(u), u, v ∈ I ⊂ R,

where the curve α(u) is called base curve and X(u) is called the ruling
of the ruled surface. The striction curve and distribution parameter of
the ruled surface (2) are

(3) γ(u) = α(u)− 〈α
′(u), X ′(u)〉
‖X ′(u)‖2

X(u)

and

(4) δ =
det[α′(u), X(u), X ′(u)]

‖X ′(u)‖2
,

respectively [9], [14].
In recent years, weighted manifolds with density has started to be a

popular topic in different areas. Density is the ratio of mass to volume;
it is a measure of a material’s or object’s compactness and it is a way
to describe mass in a continuous system % = m

V . Manifolds with density
arise naturally in mathematics, physics and economics. Here, we’ll give
some examples for them.

Manifolds with density arise in physics when considering surfaces or
regions with differing physical density. An object may have differing
internal densities so in order to determine the object’s mass it is nec-
essary to integrate volume weighted with density. As an example of
an important two-dimensional surface with density is the Gauss plane,

an Euclidean plane with volume and length weighted by (2π)−1e−r
2/2,

where r is the distance from the origin. Also, Perelman’s 2003 proof of
the 1904 Poincare conjecture considers a manifold with a density (as in
freshman physics or calculus). In government and economics, it is often
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necessary to consider aggregate properties of groups and subgroups of
people. For large groups, these aggregate properties can be determined
by integrating over the members of the group, the differing individual
properties (much like different densities).

Actually, manifold with density is a Riemannian manifold with pos-
itive density function eϕ used to weight volume and area. In terms of
the underlying Riemannian volume dV0 and area dA0, the new weighted
volume and area are given by

dV = ϕdV0,

dA = ϕdA0.

From the first variation of weighted area, Gromow [6] has introduced
ϕ−curvature (or weighted curvature) κϕ of a curve and ϕ−mean curva-
ture (or weighted mean curvature) Hϕ of an n−dimensional hypersurface
on a manifold with density eϕ and they are defined by

κϕ = κ− dϕ

dN
,

Hϕ = H − 1

n− 1

dϕ

dη
,

where κ is Riemannian curvature and N is the normal vector of the
curve; H is Riemannian mean curvature and η is the normal vector field
of the hypersurface.

Following, ϕ−Gaussian curvature (or weighted Gaussian curvature)
Gϕ of a Riemannian manifold with density eϕ has been defined by [5]

Gϕ = G−∆ϕ,

where G is Gaussian curvature of the hypersurface and ∆ is the Lapla-
cian operator and the generalized Gauss-Bonnet formula for a smooth
topological disc R is obtained as∫

R
Gϕ +

∫
∂R
κϕ = 2π.

Also, Bakry and Émery [3] have defined a generalization of the Ricci
tensor of Riemannian manifold Mn with density eϕ by

Ric∞ϕ = Ric−Hessϕ,

where, Hessϕ is Hessian of ϕ and Ric is Ricci curvature of Mn. For
more details about manifolds with density, one can see [6], [7], [8], [10],
[11], [12], [16], [20], [21] and etc.
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2. Curves With Vanishing Weighted Curvature in E3 With

Density eax
2+by2

In this section, firstly we obtain the weighted curvature of a curve

in E3 with positive density eax
2+by2 . Also, we create the curves with

vanishing weighted curvature according to cases of b = 0 and a = 0 and
obtain Smarandache curves of one of these curves.

Let α(u) = (x(u), y(u), 0) be a curve in E3. The weighted curvature

of the curve α(u) in E3 with density eax
2+by2 is obtained as

κϕ= κ− dϕ

dN

(5)

=
x′(u)y′′(u)−x′′(u)y′(u)+2(ax(u)y′(u)−bx′(u)y(u))

(
x′(u)2+y′(u)2

)
(x′(u)2 + y′(u)2)3/2

.

So,

Proposition 2.1. Weighted curvature κϕ of the curve α(u) =

(x(u), y(u), 0) in E3 with density eax
2+by2 is zero if and only if

x′(u)y′′(u)−x′′(u)y′(u)+2
(
ax(u)y′(u)−bx′(u)y(u)

) (
x′(u)2+y′(u)2

)
=0

is satisfied.

Corollary 2.2. If the curve α(u) = (x(u), y(u), 0) is a unit speed
curve, then the weighted curvature κϕ of the curve α(u) in E3 with

density eax
2+by2 is

κϕ = x′(u)y′′(u)− x′′(u)y′(u) + 2
(
ax(u)y′(u)− bx′(u)y(u)

)
.

Now, we will examine the weighted curvature of a curve in E3 with

density eax
2+by2 for different values of constants a and b.

If b = 0, a 6= 0, then from (5) the weighted curvature κϕ of the curve

α(u) in E3 with density eax
2

is obtained as follows

κϕ =
x′(u)y′′(u)− x′′(u)y′(u) + 2ax(u)y′(u)

(
x′(u)2 + y′(u)2

)
(x′(u)2 + y′(u)2)3/2

.

Hence, we have

Proposition 2.3. Weighted curvature κϕ of the curve α(u) in E3

with density eax
2

vanishes if and only if

(6) x′(u)y′′(u) + 2ax(u)y′(u)
(
x′(u)2 + y′(u)2

)
= x′′(u)y′(u)
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is satisfied.

From (6), we have

y(u) = c2 ∓
u∫

1

x′(k)√
−1 + c1e2ax(k)

2
dk.

Thus, taking the sign of ”∓” which has been stated in the last equation
as ”+”, we have

Theorem 2.4. The curve α1(u) with vanishing weighted curvature

in E3 with density eax
2

can be parametrized by

(7) α1(u) =

x(u), c2 +

u∫
1

x′(k)√
−1 + c1e2ax(k)

2
dk, 0

 .

One can see the graph of the curve α1(u) for x(u) = 4
√
u, c1 = 1, c2 =

0 and different values of a in Figure 1.

Figure 1

If a = 0, b 6= 0, then from (5) the weighted curvature κϕ of the curve

α(u) in E3 with density eby
2

is obtained as follows

κϕ =
x′(u)y′′(u)− x′′(u)y′(u)− 2bx′(u)y(u)

(
x′(u)2 + y′(u)2

)
(x′(u)2 + y′(u)2)3/2

.

So, we get
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Proposition 2.5. Weighted curvature κϕ of the curve α(u) =

(x(u), y(u), 0) in E3 with density eby
2

is zero if and only if

(8) x′(u)y′′(u) = x′′(u)y′(u) + 2bx′(u)y(u)
(
x′(u)2 + y′(u)2

)
is satisfied.

From (8), we have

x(u) = c2 ±
u∫

1

y′(k)√
−1 + c1e2by(k)

2
dk.

So,

Theorem 2.6. The curve α2(u) with vanishing weighted curvature

in E3 with density eby
2

can be parametrized by

(9) α2(u) =

c2 ± u∫
1

y′(k)√
−1 + c1e2by(k)

2
dk, y(u), 0

 .

Now, let we construct the Smarandache curves of the curve (7).

The tangent, normal and binormal vectors of the curve α1(u) are
obtained as

T =
1√

x′(u)2 + y′(u)2
(x′(u), y′(u), 0)

=
1√

c1e2ax(u)
2

(√
−1 + c1e2ax(u)

2 , 1, 0
)
,

N =
1√

x′(u)2 + y′(u)2
(−y′(u), x′(u), 0)

=
1√

c1e2ax(u)
2

(
−1,

√
−1 + c1e2ax(u)

2 , 0
)
,

B = (0, 0, 1),

respectively. So, the TN−Smarandache curve βTN , TB−Smarandache
curve βTB, NB−Smarandache curve βNB and TNB−Smarandache



Ruled surfaces in E3 with density 689

curve βTNB of the curve α1(u) are written as

βTN (u) =

(√
−1 + c1e2ax(u)

2 − 1√
2c1e2ax(u)

2
,

√
−1 + c1e2ax(u)

2 + 1√
2c1e2ax(u)

2
, 0

)
,

βTB(u) =

(√
−1 + c1e2ax(u)

2√
2c1e2ax(u)

2
,

1√
2c1e2ax(u)

2
,

1√
2

)
,(10)

βNB(u) =

(
−1√

2c1e2ax(u)
2
,

√
−1 + c1e2ax(u)

2√
2c1e2ax(u)

2
,

1√
2

)
,

βTNB(u) =

(√
−1 + c1e2ax(u)

2 − 1√
3c1e2ax(u)

2
,

√
−1 + c1e2ax(u)

2 + 1√
3c1e2ax(u)

2
,

1√
3

)
,

respectively. Hence, Figure 2 shows the graph of the Smarandache
curve βNB(u) of the curve α1(u) for x(u) = 4

√
u, c1 = 1 and a =

1, 2000, 4000, 6000.

Figure 2

Similarly, the graphs of the Smarandache curves βTN (u), βTB(u) and
βTNB(u) of the curve α1(u) can be drawn for different choosings of x(u),
c1 and a.

3. Ruled Surfaces Generated by the Curve (7) and its
Smarandache Curves

In this section, firstly we construct the ruled surfaces with the help of
the curve α1(u) and its Smarandache curves. Also, we obtain the mean



690 Mustafa Altın, Ahmet Kazan and H.Bayram Karadağ

curvatures, Gaussian curvatures, distribution parameters and striction
curves for each of these ruled surfaces and give some characterizations
for them.

Throughout this section, the base curves of the ruled surfaces will be
taken as the curve (7).

Let the ruling curve of the ruled surface be the TN−Smarandache
curve βTN (u) of the curve α1(u). Thus from (2), (7) and (10), the ruled
surface RTN can be parametrized by

RTN := ϕTN (u, v) = α1(u) + vβTN (u)(11)

= (x(u) + v

(
A1 − 1√

2A2

)
,

c2 +

u∫
1

x′(k)√
−1 + c1e2ax(k)

2
dk + v

(
A1 + 1√

2A2

)
, 0),

where A1 =
√
−1 + c1e2ax(u)

2 and A2 =
√
c1e2ax(u)

2 .
Since the ruled surface RTN is a parametrization of a plane, it is

clear that the Gaussian curvature, mean curvature and from (4), the
distribution parameter δTN of it are zero and it is developable.

From (3), the parametrization of the striction curve γTN (u) on the
ruled surface RTN is

γTN (u) = α1(u)− A2

2
√

2ax(u)
βTN (u).

So, we can state the following Theorem:

Theorem 3.1. The base curve and the striction curve of the ruled
surface RTN never intersect.

Let the ruling curve of the ruled surface be the TB−Smarandache
curve βTB(u) of the curve α1(u). Thus from (2), (7) and (10), the ruled
surface RTB can be parametrized by

RTB := ϕTB(u, v) = α1(u) + vβTB(u)

(12)

= (x(u) +
A1v√
2A2

, c2 +

u∫
1

x′(k)√
−1 + c1e2ax(k)

2
dk +

v√
2A2

,
v√
2

).
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The Gaussian and mean curvatures of the ruled surface RTB are

G = − 4a2(A2)
2x(u)2

((A2)2 + 4a2v2x(u)2)2
,

H =
av
(√

2A2A1 − 2
√

2aA2A1x(u)2 + 4a2vx(u)3
)

((A2)2 + 4a2v2x(u)2)3/2
,

respectively.
Also from (4), the distribution parameter of the ruled surface RTB is

δTB =
A2

2ax(u)
.

It is known that, a ruled surface is developable, if its distribution
parameter vanishes. So, we have

Theorem 3.2. The ruled surface RTB is not developable.

From (3), the parametrization of the striction curve γTB(u) on the
ruled surface RTB is

γTB(u) = α1(u).

So,

Theorem 3.3. The base curve and the striction curve of the ruled
surface RTB coincide.

Let the ruling curve of the ruled surface be the NB−Smarandache
curve βNB(u) of the curve α1(u). Thus from (2), (7) and (10), the ruled
surface RNB can be parametrized by

RNB := ϕNB(u, v) = α1(u) + vβNB(u)

(13)

= (x(u)− v√
2A2

, c2 +

u∫
1

x′(k)√
−1 + c1e2ax(k)

2
dk +

vA1√
2A2

,
v√
2

).

The Gaussian and mean curvatures of the ruled surface RNB are

G = 0,

H =
ax(u)√

2((A2)2 + 2
√

2aA2vx(u) + 2a2v2x(u)2)
,

respectively.
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Also from (4), the distribution parameter of the ruled surface RNB is

δNB = 0.

So, we have

Theorem 3.4. The ruled surface RNB is developable.

From (3), the parametrization of the striction curve γNB(u) on the
ruled surface RNB is

γNB(u) = α1(u)− A2

2
√

2ax(u)
βNB(u).

So, the following Theorem can be given:

Theorem 3.5. The base curve and the striction curve of the ruled
surface RNB never intersect.

Finally, let the ruling curve of the ruled surface be the TNB−Smaran-
dache curve βTNB(u) of the curve α1(u). Thus from (2), (7) and (10),
the ruled surface RTNB can be parametrized by

RTNB := ϕTNB(u, v) = α1(u) + vβTNB(u)(14)

= (x(u) +

(
A1 − 1√

3A2

)
v,

c2 +

u∫
1

x′(k)√
−1 + c1e2ax(k)

2
dk +

v(A1 + 1)√
3A2

,
v√
3

).

The Gaussian and mean curvatures of the ruled surface RTNB are

G = − a2(A2)
2x(u)2(

(A2)2 + 2
√

3aA2vx(u) + 4a2v2x(u)2
)2 ,

H =
a
(√

3A2vA1+(A2)
2x(u)−2

√
3aA2v(A1−2)x(u)2+8a2v2x(u)3

)
2
√

2
(
(A2)2 + 2

√
3aA2vx(u) + 4a2v2x(u)2

)3/2 ,

respectively.
Also from (4), the distribution parameter of the ruled surface RTNB

is

δTNB =
A2

4ax(u)
.

So, we have

Theorem 3.6. The ruled surface RTNB is not developable.
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From (3), the parametrization of the striction curve γTNB(u) on the
ruled surface RTNB is

γTNB(u) = α1(u)−
√

3A2

4ax(u)
βTNB(u).

So, the following Theorem can be given:

Theorem 3.7. The base curve and the striction curve of the ruled
surface RTNB never intersect.

In figure 3, one can see the ruled surfaces RTN , RTB, RNB and
RTNB for x(u) = 4

√
u, c1 = 1, c2 = 0 and a = 1.

(a) RTN -Ruled Surface (b) RTB-Ruled Surface

(c) RNB-Ruled Surface (d) RTNB-Ruled Surface

Figure 3. Ruled Surfaces
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4. Conclusion and Future Work

In this paper, we obtain the weighted curvature of a planar curve

in E3 with density eax
2+by2 , a,b ∈ R not all zero constants. Then, we

get the curves with vanishing weighted curvature according to the cases
of constants a and b and create the Smarandache curves of one of these
curves. Following, we construct the ruled surfaces whose base curves are
the curve with vanishing weighted curvature and ruling curves are the
Smarandache curves of this curve. By giving the distribution parame-
ters, striction curves, mean curvatures and Gaussian curvatures for each
of these ruled surfaces, we state some results for them. Also, we draw
the obtaining curves and ruled surfaces with the aid of Mathematica.

In addition, one can study these curves and surfaces in different spaces
with different densities and we think that, these studies can be useful
for geometers and physicists.
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