DOI QR코드

DOI QR Code

Non-linear Dynamic Analysis of Reinforced Concrete Slabs Subjected to Explosive Loading Using an Orthotropic Concrete Constitutive Model

이등방성 콘크리트 모델을 이용한 폭발하중을 받는 철근콘크리트 슬래브의 비선형 동적해석

  • Lee, MinJoo (Division of Civil and Environmental Engineering, KAIST) ;
  • Kwak, Hyo-Gyoung (Division of Civil and Environmental Engineering, KAIST)
  • 이민주 (한국과학기술원 건설 및 환경공학과) ;
  • 곽효경 (한국과학기술원 건설 및 환경공학과)
  • Received : 2019.10.29
  • Accepted : 2019.11.30
  • Published : 2019.12.31

Abstract

An improved numerical model for non-linear analysis of reinforced concrete (RC) slabs subjected to blast loading is proposed. This approach considers a strain rate dependent orthotropic constitutive model that directly determines the stress state using the stress-strain relation acquired from the data obtained using the biaxial strength envelope. Moreover, the bond-slip between concrete and reinforcing steel is gradually enlarged after the occurrence of cracks and is concentrated in the plastic hinge region. The bond-slip model is introduced to consider the crack direction of the concrete under a biaxial stress state. Correlation studies between the numerical analysis and the experimental results were performed to evaluate the analytical model. The results show that the proposed model can effectively be used in dynamic analyses of reinforced concrete slab members subjected to explosive loading. Moreover, it was determined that it is important to consider biaxial behavior in the material model and the bond-slip effect.

본 논문에서는 폭발하중을 받는 철근콘크리트 슬래브의 비선형 해석을 위한 개선된 수치 모델을 제안한다. 제안된 모델은 2축 응력 상태를 반영한 등가 강도에 의해 정의된 응력-변형률 관계를 사용하여 응력 상태를 직접 결정하는 변형률 속도 의존 이등방성 구성 모델을 다룬다. 또한, 균열 발생 후 콘크리트와 철근 사이의 부착 슬립이 점차 확대되어 소성힌지 영역으로 집중된다. 2축 응력 상태에서 콘크리트의 균열 방향은 주응력 방향에 따라 달라지므로 이를 고려한 부착 슬립 모델을 해석에 도입하였다. 해석 모델의 검증을 위해 수치해석과 실험결과의 상관관계 연구(correlation studies)가 수행되었다. 해석결과는 재료모델의 2축 거동과 부착 슬립의 영향을 고려하는 것이 해석결과의 정확성 향상에 중요함을 보여주며 제안된 해석 모델이 철근콘크리트 슬래브 부재의 폭발해석에 효과적으로 사용될 수 있음을 확인하였다.

Keywords

References

  1. Bischoff, P.H., Perry, S.H. (1991) Compressive Behaviour of Concrete at High Strain Rates, Mater Struct., 24(6), pp.425-450. https://doi.org/10.1007/BF02472016
  2. Biggs, J.M. (1964) Introduction to Structural Dynamics, New York, McGraw-Hill
  3. Chen, X., Wu, S., Zhou, J. (2013) Experimental and Modeling Study of Dynamic Mechanical Properties of Cement Paste, Mortar and Concrete, Const. & Build. Mater., 47, pp.419-430. https://doi.org/10.1016/j.conbuildmat.2013.05.063
  4. Chopra, A.K. (1995) Dynamics of Structures. 3rd ed. New Jersey, Prentice Hall.
  5. Comite Euro-International (1993) Ceb-Fip Model Code 1990: Design Code Du Beton. Wiltshire, UK.
  6. Darwin, D., Pecknold, D.A.W. (1974) Inelastic Model for Cyclic Biaxial Loading of Reinforced Concrete. University of Illinois at Urbana-Champaign.
  7. Gang, H.G., Kwak, H-.G. (2017) A Strain Rate Dependent Orthotropic Concrete Material Model, Int. J. Impact Eng., 103, pp.211-224. https://doi.org/10.1016/j.ijimpeng.2017.01.027
  8. Ha, J.H., Yi, N.H., Choi, J.K., Kim, J.H. (2011) Experimental Study on Hybrid CFRP-PU Strengthening Effect on RC Panels under Blast Loading, Compos. Struct, 93(8), pp.2070-2082. https://doi.org/10.1016/j.compstruct.2011.02.014
  9. Hao, H. (2015) Predictions of Structural Response to Dynamic Loads of Different Loading Rates, Int. J. Prot. Struct., 6(4), pp.585-605. https://doi.org/10.1260/2041-4196.6.4.585
  10. He, W., Wu, Y.F., Liew, K.M., Wu, Z. (2006) A 2D Total Strain Based Constitutive Model for Predicting the Behaviors of Concrete Structures, Int. J. Eng. Sci., 44(18-19), pp.1280-1303. https://doi.org/10.1016/j.ijengsci.2006.07.007
  11. Holmquist, T.J., Johnson, G.R., Cook, W.H. (1993) A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates and High Pressures, 14th International Symposium, 2, pp.591-600
  12. Hussein, A., Marzouk, H. (2000) Behavior of High-Strength Concrete under Biaxial Stresses, ACI Struct. J., 97(1), pp.27-36.
  13. Jacques, E. (2011) Blast Retrofit of Reinforced Concrete Walls and Slabs, Univ of Ottawa.
  14. Kupfer, H.B., Gerstle, K.H. (1973) Behavior of Concrete under Biaxial Stresses, J. Eng. Mech. Div., 99(4), pp.853-866. https://doi.org/10.1061/JMCEA3.0001789
  15. Kwak, H-.G., Gang, H.G. (2017) A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading, J. Comput. Struct. Eng. Inst. Korea, 30(2), pp.137-143. https://doi.org/10.7734/COSEIK.2017.30.2.137
  16. Lee, M.J., Kwak, H-.G. (2018) Blast and Impact Analyses of RC Beams Considering Bond-Slip Effect and Loading History of Constituent Materials, Int. J. Concr. Struct. Mater., 12(1).
  17. Li, Q.M., Meng, H. (2003) About the Dynamic Strength Enhancement of Concrete-like Materials in a Split Hopkinson Pressure Bar Test, Int. J. Solids Struct, 40(2), pp.343-360. https://doi.org/10.1016/S0020-7683(02)00526-7
  18. LSTC. (2007) LS-DYNA Keyword User's Manual Version 97.
  19. Malvar, L.J. (1998) Review of Static and Dynamic Properties of Steel Reinforcing Bars, ACI Mater. J.
  20. Malvar, L.J., Crawford, J.E. (1998) Dynamic Increase Factors for Concrete, 28th DDESB Seminar Orlando.
  21. Paulay, T., Priestley, M.J.N. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings, New York.
  22. Scott, B.D., Park, R., Priestley, M.J.N. (1982) Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates, J. Proc., 79(1), pp.13-27.
  23. Thiagarajan, G., Johnson, C.F. (2014) Experimental Behavior of Reinforced Concrete Slabs Subjected to Shock Loading, ACI Struct. J., 111(6), pp.1407-1417. https://doi.org/10.14359/51686970
  24. Thiagarajan, G., Kadambi, A.V., Robert, S., Johnson, C.F. (2015) Experimental and Finite Element Analysis of Doubly Reinforced Concrete Slabs Subjected to Blast Loads, Int. J. Impact Eng., 75, pp.162-173. https://doi.org/10.1016/j.ijimpeng.2014.07.018
  25. Vecchio, F.J., Collins, M.P. (1986) The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI J., 83(2), pp.219-231.
  26. Wang, W., Zhang, D., Lu, F., Wang, S.C., Tang, F. (2012) Experimental Study on Scaling the Explosion Resistance of a One-Way Square Reinforced Concrete Slab under a Close-in Blast Loading, Int. J. Impact Eng., 49, pp.158-164. https://doi.org/10.1016/j.ijimpeng.2012.03.010
  27. Yan, D., Lin, G. (2007) Dynamic Behaviour of Concrete in Biaxial Compression, Mag. Concr. Res., 59(1), pp.45-52. https://doi.org/10.1680/macr.2007.59.1.45
  28. Zhao, C.F., Chen, J.Y. (2013) Damage Mechanism and Mode of Square Reinforced Concrete Slab Subjected to Blast Loading, Theor. Appl. Fra.c Mech., 63-64, pp.54-62. https://doi.org/10.1016/j.tafmec.2013.03.006