DOI QR코드

DOI QR Code

섬유보강재를 이용한 흙막이 벽체 재료의 공학적 특성평가

Evaluation of Engineering Properties of Retaining Wall Material Using Fiber Reinforcement

  • 투고 : 2019.11.14
  • 심사 : 2019.12.19
  • 발행 : 2019.12.30

초록

최근 지하공간의 활용도가 높아짐에 따라 지하굴착의 수요가 증가하는 추세에 있다. 본 연구에서는 기존의 주열식 흙막이 말뚝공법의 문제점을 크게 개선하면서 향후 도심지에서 30m 이상의 대심도 지반 굴착시 발생 가능한 지반함몰 및 주변지반의 영향을 최소화할 수 있는 흙막이 CS-H 벽체의 개발 및 안정성 평가를 위하여 지반 신소재를 이용한 콘크리트 배합을 실시하였다. 지반신소재 벽체 재료로는 강섬유, 합성섬유, 유리섬유의 섬유보강재 배합과 풍쇄슬래그, 페로니켈의 잔골재 대체재를 선택하여 배합시험을 실시하였다. 또한 각 배합별 적절한 배합비를 선정하기 위하여 슬럼프시험, 압축강도 및 탄성계수, 휨강도, 할렬인장강도, 삼축투수 시험을 수행하였다. 시험결과 개발하고자 하는 CS-H 벽체에서 강섬유 배합조건의 시험값이 다른 기준값에 비해 매우 우수한 결과를 나타내어 가장 적합한 것으로 평가되었다.

Recently, as the utilization of underground space increases, the demand for underground excavation increases. In this study, the concrete mixture with a new material was used to develop and evaluate the stability of the CS-H wall that can greatly minimize the problems of existing wall and minimize the impact of ground depression and surrounding ground that may occur in the future for excavation of over 30 m deep in urban areas. The fiber reinforcement formulation of steel fibers, synthetic fibers, and glass fibers, along with fine aggregate parts of PS-ball and ferronickel, were mixed. The Mixture ratios were determined by conducting slump test compresive strength test, modulus of elastic test, flexural strength test, splitting tensile strength test and conductivity test. As a result of the test, the steel fiber mixture showed very good results compared to other reference values in all items, and it is considered to be the most suitable for the CS-H wall to be developed.

키워드

참고문헌

  1. ASTM D 5084 (2016), Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter, ASTM (American Society for Testing and Materials). (In United States of America)
  2. Bang, J. W, Kwon, D. S, Lee, J. H. and Lee, S. O. (2019), "Evaluation of Concrete Properties Depending on Replacement Ratio of Ferronickel Slag Fine Aggregate", Korea Concrete Institute, Vol.31, No.1 pp.511-512.
  3. Chang, D. I. and Chai, W. K., Son, Y. H. (1992), "Flexural Fatigue Bechavior of Steel Fiber Reinforced Concrete Structures", Magazine of the Korea Concrete Institute, pp.81-87.
  4. Ecomaister (2012), PS Ball test report.
  5. Hyoseok Co., Ltd. (2015), Ferronickel slag test report.
  6. Korea Concrete Institute (2011), "Development of Concrete Construction Guidelines Using Ferronickel Slag Aggregate II".
  7. Korea Conformity Laboratories (2008), "Development of Ready-mixed Shotcrete for the Economical Recycling of Industrial by-product and the Improvement of Construction Quality", pp.152-164.
  8. Korea Conformity Laboratories, (2012), Study on Geotechnical Application of Ferro-Nickel-Slag, pp.10-12.
  9. Korea Institute of Civil Engineering and Building Technology (2018), "Develpment of ground deformation minization method for deep and vertical excavation in urban area", pp.42-47.
  10. Korean Design Standard (2016), KDS 14 20 01, pp.20-21.
  11. KS F 2405 (2017), Standard test method for compressive strength of concrete, KSA(Korean Standards Association). (in Korean)
  12. KS F 2408 (2016), Standard test method for flexural strength of concrete, KSA(Korean Standards Association). (in Korean)
  13. KS F 2423 (2016), Standard Test Method for tensile splitting strength of concrete, KSA(Korean Standards Association). (in Korean)
  14. KS F 2502 (2019), Standard test method for sieve analysis of fine and coarse aggregates, KSA (Korean Standards Association). (in Korean)
  15. KS F 2504 (2014), Testing method for density and absorption of fine aggregate, KSA (Korean Standards Association). (in Korean)
  16. KS F 2505 (2017), Standard test method for bulk density and solid contents in aggregates, KSA (Korean Standards Association). (in Korean)
  17. KS F 2515 (2014), Standard test method for chloride content in aggregate, KSA (Korean Standards Association). (in Korean)
  18. KS F 2527 (2018), Concrete aggregate, KSA (Korean Standards Association). (in Korean)
  19. KS F 2566 (2014), Standard Test Method for flexural performance of fiber reinforced concrete Test, KSA (Korean Standards Association). (in Korean)
  20. Kumkang Co., LTD (2017), Steel fiber test report.
  21. Lee, S. H. (2010), A Study on the Development for Utilization of Ferro-Nickel Slag, Sunchon National University Master's thesis, pp.7-10.
  22. Nippon Electric Glass Co., LTD (2001), ARG CHOPPED STRAND SPECIFICATION.
  23. Nycon Material Co., LTD. (2017), Fiber Reinforcement Test report.
  24. Seo, D. M., Kim, Y. U., Kim, T. S., Kim, D. B., Choi, J. H. and Choi, S. J. (2016), "Evaluation of the Flowability and Strength of Mortar by Replacement ratio of Ferro-nickel slag sand", Korea Concrete Institute, Vol.28 No.1 pp.591-592.
  25. Yu, N. J., Lee, K. I. (2017), "Study on the Performance Evaluation of CS-H Wall composed of Steel Fiber", J. Korean Geosynthetics Society, Vol.16, No.2, pp.89-96. https://doi.org/10.12814/jkgss.2017.16.2.89