References
- Ando, H., 2017. Activities of smart ship application platform 2 project (SSAP2), International Marine Purchasing Association (IMPA), London, UK.
- Ball, M., Basile, A., & Veziroglu, T.N, 2015. Compendium of hydrogen energy - volume 4: hydrogen use, safety and the hydrogen economy, Woodhead publishing, Cambridge, UK.
- Degiuli, N., Catipovic, I., Martic, I., Werner, A., & Coric, V., 2017. Increase of ship fuel consumption due to the added resistance in waves, Journal of Sustainable Development of Energy, Water and Environment System, 5(1), pp.1-14. https://doi.org/10.13044/j.sdewes.d5.0129
- Fujii, J. & Tsuda, T., 1961. Experimental researches on rudder performance (2). Journal of the Society of Naval Architects of Japan, 110, pp.31-42.
- Fujii, J. & Tsuda, T., 1962. Experimental researches on rudder performance (3). Journal of the Society of Naval Architects of Japan, 111, pp.51-58.
- Johnson, H., & Styhre, L., 2015. Increased energy efficiency in short sea shipping through decreased time in port. Transportation Research Part A, 71, pp.167-178.
- Kijima, K. Nakiri, Y. Tsutsui, Y. & Matsunaga, M., 1990. Prediction method of ship manoeuvrability in deep and shallow water. MARSIM & ICSM 1990, Tokyo, Japan, 4-7 June 1990, pp.311-319.
- Kim, S., Yeo, D., Rhee, K., & Kim, D., 2008. Prediction of manoeuvrability of a ship with low forward speed in shallow water. Journal of the Society of Naval Architects of Korea, 45(3), pp.280-287. https://doi.org/10.3744/SNAK.2008.45.3.280
- Kim, M., Hizir, O., Turan, O., Day, S., & Incecik, A., 2017. Estimation of added resistance and ship speed loss in a sea way, Ocean Engineering, 141, pp.465-476. https://doi.org/10.1016/j.oceaneng.2017.06.051
- Lu, R., Turan, O., & Boulougouris, E., 2013. Voyage optimisation: prediction of ship specific fuel consumption for energy efficient shipping, Low Carbon Shipping Conference, London.
- Luo, S., Ma, N., Hirakawa, Y., 2016. Evaluation of resistance increase and speed loss of a ship in wind and waves. Journal of Ocean Engineering and Science, 1, pp.212-218. https://doi.org/10.1016/j.joes.2016.04.001
- Papanikolaou, A., Zaraphonitis, G., Bitner-Gregersen, E., Shigunov, V., Moctar, O.E., Soares, C.S. Reddy, D.N., & Sprenger, F., 2014. Energy efficient safe ship operation(shopera), Influence of EEDI on Ship Design, 24-25 September, London, UK.
- Yoon, H. & Kim, S., 2005. A study on the model test scheme for establishing the mathematical model of hydrodynamic force and moment acting on a slowly moving ship. Journal of the Society of Naval Architects of Korea, 42(2), pp.98-104. https://doi.org/10.3744/SNAK.2005.42.2.098
- You, Y., Kim, J., & Seo, M., 2017a, A study on the prediction of sailing performance for a LNGC based on the AIS data. Journal of the Society of Naval Architects of Korea, V54(4), pp.275-285. https://doi.org/10.3744/SNAK.2017.54.4.275
- You, Y., Kim, J., & Seo, M., 2017b, A feasibility study on the RPM and engine power estimation based on the combination of AIS and ECMWF database to replace the full-scale measurement. Journal of the Society of Naval Architects of Korea, 54(6), pp.501-514. https://doi.org/10.3744/SNAK.2017.54.6.501
- You, Y., Kim, J., & Seo, M., 2018a. Prediction of an actual RPM and engine power of an LNGC based on full-scale measurement data. Ocean Engineering, 147, pp.496-516. https://doi.org/10.1016/j.oceaneng.2017.10.054
- You, Y., Lee, J., & Kim, I., 2018b, Prediction of the efficient speed of an LNGC with design condition from a direct cost evaluation considering the hydrodynamic characteristics and equipment operation. Ocean Engineering, 168, pp.23-40. https://doi.org/10.1016/j.oceaneng.2018.09.011
- You, Y., & Park, H., 2018, Development of a framework to estimate the EEOI of a ship considering the hydrodynamic characteristics and engine mode. Journal of the Society of Naval Architects of Korea, 55(6), pp.457-465. https://doi.org/10.3744/SNAK.2018.55.6.457