DOI QR코드

DOI QR Code

Catalytic Pyrolysis of Waste Polyethylene Terephthalate over Waste Concrete

  • Lim, Sejeong (Department of Biological Science, Daegu University) ;
  • Kim, Young-Min (Department of Environmental Engineering, Daegu University)
  • Received : 2019.10.22
  • Accepted : 2019.11.03
  • Published : 2019.12.10

Abstract

The feasibility of waste concrete as a catalyst for the effective pyrolysis of polyethylene terephthalate (PET) was examined using thermogravimetric (TG) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS) analyses. TG analysis results indicated that the maximum decomposition temperature of PET is not altered by the use of waste concrete, showing similar values (407 ℃ and 408 ℃ at 5 ℃/min). Meanwhile, the volatile product distribution data obtained from the Py-GC/MS analysis revealed that the use of waste concrete promoted the deoxygenation reaction via converting the oxygen containing products such as benzoic acids, benzoates, and terephthalates to valuable deoxygenated aromatic hydrocarbons including benzene, toluene, ethylbenzene, and styrene. This suggests that the waste concrete can be used as a potential catalyst for the production of valuable aromatic hydrocarbons from PET pyrolysis.

Keywords

References

  1. S. Mandal and A. Dey, Chapter 1. PET chemistry, Recycling of Polyethylene Terephthalate Bottles, 1-22, William Andrew Publishing (2019).
  2. Z. Leng, R. K. Padhan, and A. Sreeram, Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt, J. Clean. Prod., 180, 682-688 (2018). https://doi.org/10.1016/j.jclepro.2018.01.171
  3. S. D. A. Sharuddin, F. Abnisa, W. M. A. W. Daud, and M. K. Aroua, A review on pyrolysis of plastic wastes, Energy Convers. Manag., 115, 308-326 (2016). https://doi.org/10.1016/j.enconman.2016.02.037
  4. G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, and M. Olazar, Recent advances in the gasification of waste plastics. A critical overview, Renew. Sustain. Energy Rev., 82, 576-596 (2018). https://doi.org/10.1016/j.rser.2017.09.032
  5. N. Malik, P. Kumar, S. Shrivastava, and S. B. Ghosh, An overview of PET waste recycling for application in packaging, Int. J. Plast. Technol., 21, 1-24 (2017). https://doi.org/10.1007/s12588-016-9164-1
  6. M. Fukushima, B. Wu, H. Ibe, K. Wakai, E. Sugiyama, H. Abe, K. Kitogawa, S. Tsuruge, K. Shimura, and E. Ono, Study on dechlorination technology for municipal waste plastics containing polyvinyl chloride and polyethylene terephthalate, J. Mater. Cycles Waste Manag., 12, 108-122 (2010). https://doi.org/10.1007/s10163-010-0279-8
  7. S. Kumagai, R. Yamasaki, T. Kameda, Y. Saito, A. Watanabe, C. Watanabe, N. Teramae and T. Yoshioka, Tandem ${\mu}$-reactor-GC/MS for online monitoring of aromatic hydrocarbon production via CaO-catalysed PET pyrolysis, React. Chem. Eng., 2, 776-784 (2017). https://doi.org/10.1039/C7RE00097A
  8. S. Du, J. A. Valla, R. S. Parnas, and G. M. Bollas, Conversion of polyethylene terephthalate based waste carpet to benzene-rich oils through thermal, catalytic, and catalytic steam pyrolysis, ACS Sustain. Chem. Eng., 4, 2852-2860 (2016). https://doi.org/10.1021/acssuschemeng.6b00450
  9. L. S. Diaz-Silvarrey, A. McMahon, and A. N. Phan, Benzoic acid recovery via waste poly(ethylene terephthalate) (PET) catalytic pyrolysis using sulfated zirconia catalyst, J. Anal. Appl. Pyrolysis, 134, 621-631 (2018). https://doi.org/10.1016/j.jaap.2018.08.014
  10. Y. K. Park, J. Jung, S. Ryu, H. W. Lee, M. Z. Siddiqui, J. Jae, A. Watanabe, and Y. M. Kim, Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two-stage calcium oxide-ZSM-5, Appl. Energy, 250, 1706-1718 (2019). https://doi.org/10.1016/j.apenergy.2019.05.088
  11. S. Tsuge, H. Ohtani, and C. Watanabe, Pyrolysis-GC/MS Data Book of Synthetic Polymers, 1st ed., Elsevier, Oxford, UK (2011).
  12. D. Shin, S. Jeong, Y. M. Kim, H. W. Lee, and Y. K. Park, Catalytic pyrolysis of waste paper cup containing coffee residuals, Appl. Chem. Eng., 29, 248-251 (2018). https://doi.org/10.14478/ACE.2018.1004
  13. F. J. H. T. V. Ramos, L. C. Mendes, and S. P. Cestari, Organically modified concrete waste with oleic acid, J. Therm. Anal. Calorim., 119, 1895-1904 (2015) https://doi.org/10.1007/s10973-014-4358-2
  14. A. P. S. Pereira, M. H. P. Silva, E, P. L. Junior, A. S. Paula, and F. J. Tommasini, Processing and characterization of pet composites reinforced with geopolymer concrete waste, Mater. Res., 20, 411-420 (2017). https://doi.org/10.1590/1980-5373-mr-2017-0734
  15. M. Fukushima, M. Shioya, H. Wakai, H. Ibe, Toward maximizing the recycling rate in a Sapporo waste plastics liquefaction plant, J. Mater. Cycles Waste Manag., 11, 11-18 (2009). https://doi.org/10.1007/s10163-008-0212-6
  16. G. Ozsin and A. E. Putun, A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics, J. Clean. Prod., 205, 1127-1138 (2018). https://doi.org/10.1016/j.jclepro.2018.09.134
  17. Q. Xu, T. Meng, and M. Huang, Effects of nano-$CaCO_3$ on the compressive strength and microstructure of high strength concrete in different curing temperatures, Appl. Mech. Mater., 121-126, 126-131 (2011). https://doi.org/10.4028/www.scientific.net/AMM.121-126.126