수자원분야에서의 기계학습 적용(3)

  • Published : 2019.11.15

Abstract

Keywords

References

  1. Araghinejad, S. (2013). Data-Driven Modeling: Using MATLAB in Water Resources and Environmental Engineering. Water Science and Technology Library, Springer.
  2. Bezdek, J.C., Ehrlich, R. and Full, W. (1984). FCM: The fuzzy C-means clustering algorithm. Computers & Geosciences, Vol. 10, No. 2-3, pp. 191-203. https://doi.org/10.1016/0098-3004(84)90020-7
  3. Chang, F.J., Chang, L.C. and Wang, Y.S. (2007) Enforced self-organizing map neural networks for river flood forecasting, Hyrological Process, Vol. 21, pp. 741-749. https://doi.org/10.1002/hyp.6262
  4. Dogulu, N. and Kentel, E., (2017). Clustering of hydrological data : a review of methods for runoff predictions in ungaged basins, EGU General Assembly 2017.
  5. Heo, G.Y., Seo, J.S. and Lee, I.G. (2011). Problems in fuzzy c-means and its possible solutions. Journal of the Korea Society of Computer and Information, Vol. 16, No. 1, pp. 39-46. https://doi.org/10.9708/jksci.2011.16.1.039
  6. Kim, H.I., Keum, H.J. and Han, K.Y. (2018). Application and comparison of dynamic artificial neural networks for urban inundation analysis. Journal of the Korean Society of Civil Engineers, Vol. 38, No. 5, pp. 671-683. https://doi.org/10.12652/Ksce.2018.38.5.0671
  7. Kim, H.I., Keum, H.J. and Han, K.Y. (2019). Real-time urban inundation prediction combining hydraulic and probabilistic methods. Water, Vol. 11, No. 293, doi:10.3390/w11020293.
  8. Nishiyama, K.J., Endo, S.C., Jinno, K.J., Uvo, C.B., Olsson, J. and Berndtsson, R. (2007). Identification of typical synoptic patterns causing heavy rainfall in the rainy season in Japan by a Self-Organizing Map. Atmospheric Research, Vol. 83, pp. 185-200. https://doi.org/10.1016/j.atmosres.2005.10.015
  9. Remesan, R. and Mathew, J. (2019). Hydrological Data Driven Modelling A Case Study Approach. Earth Systems Data and Models, Vol. 1, Springer.
  10. Vijayarani, S. and Jothi, P. (2014). Hierarchical and partitioning clustering algorithms for detecting outliers in data streams. International Journal of Advanced Research in Computer and Communication Engineering, Vol. 3, No. 4, pp.6204-6207.
  11. Zahmatkesh, Z., Karamouz, M. and Nazif, S. (2015). Uncertainty based modeling of rainfall-runoff: Combined differential evolution adaptive Metropolis(DREAM) and K-means clustering. Advances in Water Resources, Vol. 83, pp. 405-420. https://doi.org/10.1016/j.advwatres.2015.06.012