DOI QR코드

DOI QR Code

Diazoxide Suppresses Mitochondria-dependent Apoptotic Signaling in Endothelial Cells Exposed to High Glucose Media

고농도 당에 노출된 혈관 내피세포에서 미토콘드리아 의존성 세포사멸 기작 활성화에 미치는 diazoxide의 억제 효과

  • Jung, Hyun Ju (Department of Physiology, Pusan National University School of Medicine) ;
  • Kim, Tae Hyun (Department of Physiology, Pusan National University School of Medicine) ;
  • Woo, Jae Suk (Department of Physiology, Pusan National University School of Medicine)
  • 정현주 (부산대학교 의과대학 생리학교실) ;
  • 김태현 (부산대학교 의과대학 생리학교실) ;
  • 우재석 (부산대학교 의과대학 생리학교실)
  • Received : 2019.11.05
  • Accepted : 2019.11.14
  • Published : 2019.12.30

Abstract

In the present study, we examined the effect of mitochondrial K+ channel opener diazoxide on the mitochondria-dependent apoptotic signaling in endothelial cells exposed to high glucose (HG) media. Endothelial cells derived from human umbilical veins were exposed to HG media containing 30 mM glucose, and the degree of apoptotic cell death associated with activation of the mitochondria-dependent apoptotic signaling pathway was determined. Exposure to HG media was seen to enhance apoptotic cell death in a time-dependent manner. In these cells, activation of caspases 3, 8, and 9 was observed, and while caspase-3 and -9 inhibitors suppressed the HG-induced apoptotic cell death, a caspase-8 inhibitor did not. The HG-treated cells exhibited disruption of mitochondrial membrane potential, formation of permeability transition pores, and cytosolic release of cytochrome c. Subsequently, diazoxide was seen to attenuate the HG-induced apoptotic cell death; caspase-9 activation was suppressed but caspase 8 was not. Diazoxide also suppressed the depolarization of mitochondrial membrane potential, the formation of mitochondrial permeability transition pores, and the release of cytochrome c. These effects were significantly inhibited by 5-hydroxydecanoate, a selective blocker of ATP-sensitive K+ channels (KATP). The present results demonstrate that diazoxide exhibits a beneficial effect to ameliorate HG-induced endothelial cell apoptosis. Opening the KATP could help preserve the functional integrity of mitochondria and provide an underlying mechanism to suppress HG-triggered apoptotic signaling.

본 연구에서는 사람의 제대정맥 내피세포에서 고농도 당에 의해 유도되는 세포사멸과 연관된 미토콘드리아의 기능적 지표 변화에 미치는 diazoxide의 효과를 관찰하였다. 고농도 당에 노출된 내피세포에서 세포사멸이 시간에 따라 증가하였고, caspase 3와 8, 9의 활성 증가가 동반되었다. Caspase 3와 9의 억제제들이 세포사멸을 감소시킨 반면 caspase 8의 억제제는 효과가 없었다. 고농도 당에 노출된 세포에서 미토콘드리아 막전위의 탈분극과 막투과도의 증가, 치토크롬 C (cytochrome C)의 유리가 동반됨을 관찰할 수 있었다. Diazoxide는 고농도 당에 의한 미토콘드리아 의존성 세포사멸 신호의 활성화를 억제하였다. Diazoxide의 이러한 효과들은 미토콘드리아막의 ATP-억제성 칼륨통로 차단제인 5-hydroxydecanoate에 의해 차단되었다. 이상의 결과들을 종합하면 diazoxide가 미토콘드리아막의 ATP-억제성 칼륨통로 개방을 통해 미토콘드리아 의존성 세포사멸 신호기작의 활성화를 차단하여 고농도 당에 의해 유도되는 세포사멸을 억제하는 것으로 사료된다.

Keywords

References

  1. Akita, K., Ohtsuki, T., Nukada, Y., Tanimoto, T., Namba, M., Okura, T., Takakura-Yamamoto, R., Torigoe, K., Gu, Y., Su, M. S., Fujii, M., Satoh-Itoh, M., Yamamoto, K., Kohno, K., Ikeda, M. and Kurimoto, M. 1997. Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP.1 cells. J. Biol. Chem. 272, 26595-26603. https://doi.org/10.1074/jbc.272.42.26595
  2. Alam, U., Asghar, O., Azmi, S. and Malik, R. A. 2014. General aspects of diabetes mellitus. Handb. Clin. Neurol. 126, 211-222. https://doi.org/10.1016/B978-0-444-53480-4.00015-1
  3. Baumgartner-Parzer, S. M., Wagner, L., Pettermann, M., Grillari, J., Gessl, A. and Waldhausl, W. 1995. High-glucosetriggered apoptosis in cultured endothelial cells. Diabetes 44, 1323-1327. https://doi.org/10.2337/diab.44.11.1323
  4. Cardoso, S., Correia, S. C., Santos, R. X., Carvalho, C., Candeias, E., Duarte, A. I., Placido, A. I., Santos, M. S. and Moreira, P. I. 2013. Hyperglycemia, hypoglycemia and dementia: role of mitochondria and uncoupling proteins. Curr. Mol. Med. 13, 586-601. https://doi.org/10.2174/1566524011313040010
  5. Curcio, F. and Ceriello, A. 1992. Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications. In Vitro Cell Dev. Biol. 28, 787-790. https://doi.org/10.1007/BF02631069
  6. Dolgov, V. V., Zaikina, O. E., Bondarenko, M. F. and Repin, V. S. 1982. Aortic endothelium of alloxan diabetic rabbits: a quantitative study using scanning electron microscopy. Diabetologia 22, 338-343. https://doi.org/10.1007/BF00253578
  7. Duty, S. and Weston, A. H. 1990. Potassium channel openers. Pharmacological effects and future uses. Drugs 40, 785-791. https://doi.org/10.2165/00003495-199040060-00002
  8. Edwards, G. and Weston, A. H. 1990. Structure-activity relationships of $K^+$ channel openers. Trends Pharmacol. Sci. 11, 417-422. https://doi.org/10.1016/0165-6147(90)90149-3
  9. Efanova, I. B., Zaitsev, S. V., Zhivotovsky, B., Kohler, M., Efendic, S., Orrenius, S. and Berggren, P. O. 1998. Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular $Ca^{2+}$ concentration. J. Biol. Chem. 273, 33501-33507. https://doi.org/10.1074/jbc.273.50.33501
  10. Guldstrand, M., Grill, V., Bjorklund, A., Lins, P. E. and Adamson, U. 2002. Improved cell function after short-term treatment with diazoxide in obese subjects with type 2 diabetes. Diabetes Metab. 28, 448-456.
  11. Hansen, J. B., Arkhammar, P. O., Bodvarsdottir, T. B. and Wahl, P. 2004. Inhibition of insulin secretion as a new drug target in the treatment of metabolic disorders. Curr. Med. Chem. 11, 1595-615. https://doi.org/10.2174/0929867043365026
  12. Huang, Q., Bu, S., Yu, Y., Guo, Z., Ghatnekar, G., Bu, M., Yang, L., Lu, B., Feng, Z., Liu, S. and Wang, F. 2007. Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology 148, 81-91. https://doi.org/10.1210/en.2006-0738
  13. Inoue, I., Nagase, H., Kishi, K. and Higuti, T. 1991. ATP-sensitive $K^+$ channel in the mitochondrial inner membrane. Nature 352, 244-247. https://doi.org/10.1038/352244a0
  14. Kersten, J. R., Gross, G. J., Pagel, P. S. and Warltier, D. C. 1998. Activation of adenosine triphosphate-regulated potassium channels: mediation of cellular and organ protection. Anesthesiology 88, 495-513. https://doi.org/10.1097/00000542-199802000-00029
  15. Kohner, E. M. and Henking, P. 1970. Correlation of fluorescent angiogram and retinal digest in diabetic retinopathy. Am. J. Ophthalmol. 69, 403-414. https://doi.org/10.1016/0002-9394(70)92273-7
  16. Kroemer, G., Dallaporta, B. and Resche-Rigon, M. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619-642. https://doi.org/10.1146/annurev.physiol.60.1.619
  17. Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A. and Herman, B. 1998. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366, 177-196. https://doi.org/10.1016/S0005-2728(98)00112-1
  18. Lorenzi, M. 1992. Glucose toxicity in the vascular complications of diabetes: the cellular perspective. Diabetes Metab. Rev. 8, 85-103. https://doi.org/10.1002/dmr.5610080202
  19. Lorenzi, M., Cagliero, E. and Toledo, S. 1985. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes 34, 621-627. https://doi.org/10.2337/diab.34.7.621
  20. Lorenzi, M., Montisano, D. F., Toledo, S. and Barrieux, A. 1987. High glucose induces DNA damage in cultured human endothelial cells. J. Clin. Invest. 77, 322-325. https://doi.org/10.1172/JCI112295
  21. Lorenzi, M., Nordberg, J. A. and Toledo, S. 1987. High glucose prolongs cell-cycle traversal of cultured human endothelial cells. Diabetes 36, 1261-1267. https://doi.org/10.2337/diab.36.11.1261
  22. Mizutani, M., Kern, T. S. and Lorenzi, M. 1996. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J. Clin. Invest. 97, 2883-2890. https://doi.org/10.1172/JCI118746
  23. Murry, C. E., Jennings, R. B. and Reimer, K. A. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124-1136. https://doi.org/10.1161/01.CIR.74.5.1124
  24. Noma, A. 1983. ATP-regulated $K^+$ channels in cardiac muscle. Nature 305, 147-148. https://doi.org/10.1038/305147a0
  25. Ozoren, N., Kim, K., Burns, T. F., Dicker, D. T., Moscioni, A. D. and El-Deiry, W. S. 2000. The caspase 9 inhibitor Z-LEHD-FMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 60, 6259-6265.
  26. Rodriguez-Araujo, G. and Nakagami, H. 2018. Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovasc. Endocrinol. Metab. 14, 4-9. https://doi.org/10.1097/XCE.0000000000000141
  27. Szewczyk, A. and Marban, E. 1999. Mitochondria: a new target for $K^+$ channel openers Trends. Pharmacol. Sci. 20, 157-161. https://doi.org/10.1016/S0165-6147(99)01301-2
  28. Talanian, R. V., Quinlan, C., Trautz, S., Hackett, M. C., Mankovich, J. A., Banach, D., Ghayur, T., Brady, K. D. and Wong, W. W. 1997. Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677-9682. https://doi.org/10.1074/jbc.272.15.9677
  29. Van Noorden, C. J. 2001. The history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition. Acta Histochem. 103, 241-251. https://doi.org/10.1078/0065-1281-00601
  30. Vincent, A. M, Olzmann, J. A, Brownlee, M., Sivitz, W. I. and Russell, J. W. 2004. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 53, 726-734. https://doi.org/10.2337/diabetes.53.3.726