DOI QR코드

DOI QR Code

Flavonoids 및 그 배당체의 산화적 스트레스에 대한 신경교세포 보호 효과

Effects of Flavonoids and Their Glycosides on Oxidative Stress in C6 Glial Cells

  • 김지현 (부산대학교 식품영양학과) ;
  • 김현영 (경남과학기술대학교 식품과학부) ;
  • 조은주 (부산대학교 식품영양학과)
  • Kim, Ji Hyun (Department of Food Science and Nutrition, and Kimchi Research Institute, Pusan National University) ;
  • Kim, Hyun Young (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, and Kimchi Research Institute, Pusan National University)
  • 투고 : 2019.09.24
  • 심사 : 2019.11.22
  • 발행 : 2019.12.30

초록

뇌에서 과량의 reactive oxygen species (ROS) 생성에 의해 유발되는 산화적 스트레스는 알츠하이머 질환과 같은 신경퇴행성 질환의 원인으로 알려져 있다. 본 연구에서는 kaempferol, kaempferol-3-O-glucoside, quercetin, quercetin-3-β-D-glucoside와 같은 flavonoid와 그 배당체의 H2O2 유도 산화적 스트레스에 대한 C6 신경교세포보호 효과를 확인하였다. H2O2만을 처리한 control군은 아무것도 처리하지 않은 normal군에 비해 세포 생존율 감소와 ROS 생성 증가를 통해 C6 신경교세포의 산화적 손상이 유도되었음을 확인하였다. 반면 4가지 flavonoid를 각각 처리한 군의 경우, H2O2를 처리한 control군에 비해 세포 생존율 증가와 ROS 생성 감소를 통해 산화적 손상 억제를 통한 신경교세포 보호 효과를 확인하였다. Flavonoid의 신경교세포 보호 작용 메커니즘을 규명하기 위해, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and interleukine (IL)-1β 등의 염증 관련 단백질 발현을 측정하였다. H2O2를 처리한 control군은 normal군에 비해 iNOS, COX-2, IL-1β 단백질 발현 증가와 IκB-α 발현 감소를 통해 신경교세포의 산화적 손상으로 인한 염증 반응을 확인하였다. 반면, 4가지 flavonoid를 각각 처리한 군의 경우 iNOS, COX-2, IL-1β 단백질 발현 감소와 IκB-α 발현 증가를 나타내어, 염증 반응 개선을 통한 신경교세포 보호 효과를 확인하였다. 특히, quercetin과 그 배당체인 quercetin-3-β-D-glucoside를 처리한 군은 kaempferol과 그 배당체인 kaempferol-3-O-glucoside를 처리한 군에 비해 우수한 신경교세포 보호 효과를 나타내었다. 본 연구는 4가지 flavonoid가 신경교세포에서 산화적 스트레스 억제를 통해 신경퇴행성 질환을 예방 및 치료할 수 있을 것으로 사료된다.

Oxidative stress induced by the over-production of reactive oxygen species (ROS) in the brain is the most common cause of neurodegenerative diseases such as Alzheimer's. In the present study, we investigated the protective effects of flavonoids and their glycosides, namely kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-β-D-glucoside, against H2O2-induced oxidative stress in the C6 glial cells. The H2O2-treated glial cells exhibited decreased cell viability and increased ROS production when compared with normal cells. However, cells treated with each of the four flavonoids/glycosides demonstrated significantly increased viability and suppressed ROS production when compared with the H2O2-treated control group. These results indicate that flavonoids/glycosides attenuate oxidative stress induced by H2O2 in C6 glial cells. To confirm the protective molecular mechanisms, we measured pro-inflammatory factors such as inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β. H2O2 treatment was seen to elevate these factors and decrease IκB-α in the C6 glial cells, while the flavonoids/glycosides induced a down-regulation of the pro-inflammatory factors and increased IκB-α, indicating a neuroprotective effects through attenuation of the inflammation. In particular, quercetin and its glycoside showed a higher neuroprotective effect than the kaempferol treatments. These results suggest that these flavonoids and their glycosides could be promising therapeutic agents for neurodegenerative diseases via the attenuation of oxidative stress.

키워드

참고문헌

  1. Aid, S. and Bosetti, F. 2011. Targeting cyclooxygenases-1 and -2 in neuroinflammation: therapeutic implications. Biochimie 93, 46-51. https://doi.org/10.1016/j.biochi.2010.09.009
  2. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  3. Cathcart, R., Schwiers, E. and Ames, B. N. 1984. Detection of picomole levels of lipid hydroperoxides using a dichlorofluorescein fluorescent assay. Methods Enzymol. 105, 352-358. https://doi.org/10.1016/S0076-6879(84)05047-3
  4. Chen, T. J., Jeng, J. Y., Lin, C. W., Wu, C. Y. and Chen, Y. C. 2006. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology 223, 113-126. https://doi.org/10.1016/j.tox.2006.03.007
  5. Denny Joseph, K. M. and Muralidhara. 2013. Enhanced neuroprotective effect of fish oil in combination with quercetin against 3-nitropropionic acid induced oxidative stress in rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 83-92. https://doi.org/10.1016/j.pnpbp.2012.08.018
  6. DiGuiseppi, J. and Fridovich, I. 1984. The toxicology of molecular oxygen. Crit. Rev. Toxicol. 12, 315-342. https://doi.org/10.3109/10408448409044213
  7. Gitika, B., Sai Ram, M., Sharma, S. K., Ilavazhagan, G. and Banerjee, P. K. 2006. Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic. Res. 40, 95-102. https://doi.org/10.1080/10715760500335447
  8. Halliwell, B. and Gutteridge, J. M. 1986. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246, 501-514. https://doi.org/10.1016/0003-9861(86)90305-X
  9. Jazvinscak Jembrek, M., Vukovic, L., Puhovic, J., Erhardt, J. and Orsolic, N. 2012. Neuroprotective effect of quercetin against hydrogen peroxide-induced oxidative injury in P19 neurons. J. Mol. Neurosci. 47, 286-299. https://doi.org/10.1007/s12031-012-9737-1
  10. Jeong, C. H., Kim, J. H., Choi, G. N., Kwak, J. H., Kim, D. O. and Heo, H. J. 2010. Protective effects of extract with phenolics from Camellia (Camellia japonica) leaf against oxidative stress-induced neurotoxicity. Food Sci. Biotechnol. 19, 1347-1353. https://doi.org/10.1007/s10068-010-0192-x
  11. Jiang, W., Luo, T., Li, S., Zhou, Y., Shen, X. Y., He, F., Xu, J. and Wang, H. Q. 2016. Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/$GSK3{\beta}$ signaling pathways in HT22 hippocampal neurons. PLoS One 11, 0152371.
  12. Kang, C. H., Choi, Y. H., Moon, S. K., Kim, W. J. and Kim, G. Y. 2013. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-${\kappa}B$ pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol. 17, 808-813. https://doi.org/10.1016/j.intimp.2013.09.009
  13. Kouhestani, S., Jafari, A. and Babaei, P. 2018. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural. Regen. Res. 13, 1827-1832. https://doi.org/10.4103/1673-5374.238714
  14. Lee, A. Y., Wu, T. T., Hwang, B. R., Lee, J., Lee, M. H., Lee, S. and Cho, E. J. 2016. The neuro-protective effect of the methanolic extract of Perilla frutescens var. japonica and rosmarinic acid against $H_2O_2$-induced oxidative stress in C6 glial cells. Biomol. Ther. 24, 338-345. https://doi.org/10.4062/biomolther.2015.135
  15. Lowenstein, C. J., Dinerman, J. L. and Snyder, S. H. 1994. Nitric oxide: a physiologic messenger. Ann. Intern. Med. 120, 227-237. https://doi.org/10.7326/0003-4819-120-3-199402010-00009
  16. Malar, D. S. and Devi, K. P. 2014. Dietary polyphenols for treatment of Alzheimer's disease-future research and development. Curr. Pharm. Biotechnol. 15, 330-342. https://doi.org/10.2174/1389201015666140813122703
  17. Meffert, M. K. and Baltimore, D. 2005. Physiological functions for brain NF-kappaB. Trends Neurosci. 28, 37-43. https://doi.org/10.1016/j.tins.2004.11.002
  18. Minghetti, L. 2004. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63, 901-910. https://doi.org/10.1093/jnen/63.9.901
  19. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  20. Park, S. B., Lee, D. S., Kang J. Y., Kim, J. M., Park, S. K. Kang, J. E., Kwon, B. S., Park, S. H. Lee, C. J. and Heo, H. J. 2017. Protective effect on neuronal cells of Orostachys japonicus A. Berger extract against reactive oxygen species-induced neuronal cytotoxicity and active compounds. Kor. J. Food Sci. Technol. 49, 524-531. https://doi.org/10.9721/KJFST.2017.49.5.524
  21. Park, S. E., Sapkota, K., Kim, S., Kim, H. and Kim, S. J. 2011. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br. J. Pharmacol. 164, 1008-1025. https://doi.org/10.1111/j.1476-5381.2011.01389.x
  22. Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J. and Valko, M. 2017. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 38, 592-607. https://doi.org/10.1016/j.tips.2017.04.005
  23. Ramalingam, M. and Kim, S. J. 2014. Insulin on hydrogen peroxide-induced oxidative stress involves ROS/Ca2+ and Akt/Bcl-2 signaling pathways. Free Radic. Res. 48, 347-356. https://doi.org/10.3109/10715762.2013.869588
  24. Reed, T. T. 2011. Lipid peroxidation and neurodegenerative disease. Free Radic. Biol. Med. 51, 1302-1319. https://doi.org/10.1016/j.freeradbiomed.2011.06.027
  25. Salim, S. 2017. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 360, 201-205. https://doi.org/10.1124/jpet.116.237503
  26. Sawikr, Y., Yarla, N. S., Peluso, I., Kamal, M. A., Aliev, G. and Bishayee, A. 2017. Neuroinflammation in Alzheimer's disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. Adv. Protein Chem. Struct. Biol. 108, 33-57. https://doi.org/10.1016/bs.apcsb.2017.02.001
  27. Sies, H. 1997. Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291-295. https://doi.org/10.1113/expphysiol.1997.sp004024
  28. Spasojevic, I., Bajic, A., Jovanovic, K., Spasic, M. and Andjus, P. 2009. Protective role of fructose in the metabolism of astroglial C6 cells exposed to hydrogen peroxide. Carbohydr. Res. 344, 1676-1681. https://doi.org/10.1016/j.carres.2009.05.023
  29. Takashima, M., Ichihara, K. and Hirata, Y. 2019. Neuroprotective effects of Brazilian green propolis on oxytosis/ferroptosis in mouse hippocampal HT22 cells. Food Chem. Toxicol. 132, 110669. https://doi.org/10.1016/j.fct.2019.110669
  30. Thapa, A. and Carroll, N. J. 2017. Dietary modulation of oxidative stress in Alzheimer's disease. Int. J. Mol. Sci. 18, 1583. https://doi.org/10.3390/ijms18071583
  31. Xiao, J. 2017. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 57, 1874-1905.
  32. Yang, E. J., Kim, G. S., Jun, M. and Song, K. S. 2014. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct. 5, 1395-1402. https://doi.org/10.1039/c4fo00068d
  33. Youn, Y., Kim, H. Y., Park, H. M., Lee, S. H., Park, J. R., Hong, S. G. and Kim, Y. G. 2015. Protective effects of mulberry (Morus alba) sugar extracts on hydrogen peroxide- induced oxidative stress in HepG2 cell. Kor. J. Food Preserv. 22, 751-757. https://doi.org/10.11002/kjfp.2015.22.5.751
  34. Yu, L., Chen, C., Wang, L. F., Kuang, X., Liu, K., Zhang, H. and Du, J. R. 2013. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-${\kappa}B$ and STAT3 in transient focal stroke. PLoS One 8, 55839. https://doi.org/10.1371/journal.pone.0055839
  35. Zaplatic, E., Bule, M., Shah, S. Z. A., Uddin, M. S. and Niaz, K. 2019. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sci. 224, 109-119. https://doi.org/10.1016/j.lfs.2019.03.055
  36. Zhang, S., Qi, Y., Xu, Y., Han, X., Peng, J., Liu, K. and Sun, C. K. 2013. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia-reperfusion injury through suppression of apoptosis and inflammation. Neurochem. Int. 63, 522-532. https://doi.org/10.1016/j.neuint.2013.08.008
  37. Zhang, X., Wu, J. Z., Lin, Z. X., Yuan, Q. J., Li, Y. C., Liang, J. L., Zhan, J. Y., Xie, Y. L., Su, Z. R. and Liu, Y. H. 2019. Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnen against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis. J. Ethnopharmacol. 234, 44-56. https://doi.org/10.1016/j.jep.2018.12.050