DOI QR코드

DOI QR Code

스타틴(statin) 약물이 성체줄기세포의 골분화에 미치는 영향

An Analysis for Effects of Stain Family Drugs on Osteogenic Differentiation using Human Periosteum-derived Mesenchymal Stem Cells

  • 문동규 (경상대학교병원 정형외과) ;
  • 윤정원 (경상대학교병원 구강악안면외과) ;
  • 김보규 (경상대학교 약학과) ;
  • 이아람 (경상대학교 약학과) ;
  • 문선영 (경상대학교 약학과) ;
  • 변준호 (경상대학교병원 구강악안면외과) ;
  • 황선철 (경상대학교병원 정형외과) ;
  • 우동균 (경상대학교 약학과)
  • Moon, Dong Kyu (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Yun, Jeong-Won (Department of Oral and Maxillofacial Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Kim, Bo Gyu (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Lee, A Ram (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Moon, Sun Young (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Byun, June-Ho (Department of Oral and Maxillofacial Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Hwang, Sun-Chul (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Woo, Dong Kyun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
  • 투고 : 2019.08.28
  • 심사 : 2019.11.19
  • 발행 : 2019.12.30

초록

골다공증의 진행은 뼈질량 감소와 골절위험 증가를 야기한다. 골다공증은 노인 인구에서 흔하며, 최근 들어 급속한 고령화 사회로 인해 그 환자수도 동반하여 크게 증가하고 있다. 현재 처방되는 골다공증 치료제의 대부분은 파골세포 억제 효과에 기반하여 골흡수를 방지한다. 그러나 이러한 골다공증 치료제는 새로운 뼈형성을 증가시키지는 못하며 수반되는 여러 부작용도 보고되고 있다. 따라서 골다공증의 새로운 제어와 치료법 개발을 위해 성체줄기세포의 골세포 분화유도와 조골세포 활성을 도모하는 재생의학적 접근이 활발히 연구되고 있다. 스타틴(statin) 계열 약물은 혈중 콜레스테롤 강하제로 심혈관 질환에 흔히 처방되는 치료제이다. 흥미롭게도 최근 일련의 연구에서 이러한 스타틴이 조골세포 활성에 긍정적인 영향을 주어 뼈형성을 촉진한다는 보고가 발표되고 있다. 따라서, 본 연구에서는 이러한 스타틴 약물이 인체 골막유래 성체줄기세포의 골세포 분화과정이나 조골세포 활성에 영향이 있는 지를 분석하였다. 현재 임상적으로 처방되는 총 7 종류의 스타틴 약물에 대해, 골막유래 성체줄기세포의 골세포 분화과정에서 조골세포 활성과 관련된 초기와 후기 표지자인 alkaline phosphatase의 활성과 칼슘 침착을 각각 분석하였다. 본 연구에서 일부 스타틴(pitavastatin과 pravastatin)은 약하지만 뼈형성을 증가시키는 효과가 있음을 알 수 있었다. 이러한 연구결과는 스타틴이 골막유래 줄기세포로부터 골세포로의 분화나 조골세포 활성을 조절할 수 있는 물질이 될 수 있으며, 이러한 약물이 골세포분화나 재생의학의 새로운 조절 물질로서 골다공증 치료에 응용될 수 있음을 제시한다.

Osteoporosis is characterized by a reduction in bone mass and typically manifests as an increase in fractures. Because this disease is common in elderly populations and lifespans are rapidly increasing, the incidence of osteoporosis has also grown. Most drugs currently used for osteoporosis treatment target osteoclasts in the bone tissue to prevent absorption. However, these medications also cause certain side effects and, furthermore, cannot increase bone mass. Thus, in order to control osteoporosis, regenerative medicine that utilizes adult stem cells and osteoblasts has been extensively studied. Statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, are cholesterol-lowering drugs that have been widely prescribed for cardiovascular diseases. Interestingly, recent studies have reported the beneficial effects of various statins on bone formation via the activation of osteoblasts. Thus, the current study investigated the effects of seven statin-family drugs on osteoblast activity during osteogenic differentiation using adult stem cells from human periosteal tissue. Specifically, statin effects on alkaline phosphatase activity, an early marker of bone cell differentiation, and on calcium deposit, a late marker of bone cell differentiation, were assessed. The results demonstrate that some statins (for example, pitavastatin and pravastatin) have a weak but positive effect on bone formation, and the findings therefore suggest that statin treatments can be a novel modulator for osteogenic differentiation and regenerative medicine using periosteal stem cells.

키워드

참고문헌

  1. An, T., Hao, J., Sun, S., Li, R., Yang, M., Cheng, G. and Zou, M. 2017. Efficacy of statins for osteoporosis: a systematic review and meta-analysis. Osteoporos. Int. 28, 47-57. https://doi.org/10.1007/s00198-016-3844-8
  2. Armas, L. A. and Recker, R. R. 2012. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol. Metab. Clin. North Am. 41, 475-486. https://doi.org/10.1016/j.ecl.2012.04.006
  3. Berebichez-Fridman, R., Gomez-Garcia, R., Granados-Montiel, J., Berebichez-Fastlicht, E., Olivos-Meza, A., Granados, J., Velasquillo, C. and Ibarra, C. 2017. The holy grail of orthopedic surgery: mesenchymal stem cells-their current uses and potential applications. Stem Cells Int. 2017, 2638305.
  4. Bu, D. X., Griffin, G. and Lichtman, A. H. 2011. Mechanisms for the anti-inflammatory effects of statins. Curr. Opin. Lipidol. 22, 165-170. https://doi.org/10.1097/MOL.0b013e3283453e41
  5. Campos, R. M., de Piano, A., da Silva, P. L., Carnier, J., Sanches, P. L., Corgosinho, F. C., Masquio, D. C., Lazaretti-Castro, M., Oyama, L. M., Nascimento, C. M., Tock, L., de Mello, M. T., Tufik, S. and Damaso, A. R. 2012. The role of pro/anti-inflammatory adipokines on bone metabolism in NAFLD obese adolescents: effects of long-term interdisciplinary therapy. Endocrine 42, 146-156. https://doi.org/10.1007/s12020-012-9613-3
  6. Choudhery, M. S., Badowski, M., Muise, A., Pierce, J. and Harris, D. T. 2014. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J. Transl. Med. 12, 8. https://doi.org/10.1186/1479-5876-12-8
  7. Chung, J. E., Park, J. H., Yun, J. W., Kang, Y. H., Park, B. W., Hwang, S. C., Cho, Y. C., Sung, I. Y., Woo, D. K. and Byun, J. H. 2016. Cultured human periosteum-derived cells can differentiate into osteoblasts in a perioxisome proliferator-activated receptor gamma-mediated fashion via bone morphogenetic protein signaling. Int. J. Med. Sci. 13, 806-818. https://doi.org/10.7150/ijms.16484
  8. Coxon, F. P., Thompson, K., Roelofs, A. J., Ebetino, F. H. and Rogers, M. J. 2008. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone 42, 848-860. https://doi.org/10.1016/j.bone.2007.12.225
  9. De Bari, C., Dell'Accio, F. and Luyten, F. P. 2001. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 44, 85-95. https://doi.org/10.1002/1529-0131(200101)44:1<85::AID-ANR12>3.0.CO;2-6
  10. De Bari, C., Dell'Accio, F., Vanlauwe, J., Eyckmans, J., Khan, I. M., Archer, C. W., Jones, E. A., McGonagle, D., Mitsiadis, T. A., Pitzalis, C. and Luyten, F. P. 2006. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 54, 1209-1221. https://doi.org/10.1002/art.21753
  11. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8, 315-317. https://doi.org/10.1080/14653240600855905
  12. El-Nabarawi, N., El-Wakd, M. and Salem, M. 2017. Atorvastatin, a double weapon in osteoporosis treatment: an experimental and clinical study. Drug Des. Devel. Ther. 11, 1383-1391. https://doi.org/10.2147/DDDT.S133020
  13. Ettinger, B., Burr, D. B. and Ritchie, R. O. 2013. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone 55, 495-500. https://doi.org/10.1016/j.bone.2013.02.004
  14. Ferreira Junior, D. B., Pizziolo, V. R., Oliveira, T. T., Matta, S., Piccolo, M. S. and Queiroz, J. H. 2018. Biometric, histomorphometric, and biochemical profile in atorvastatin calcium treatment of female rats with dexamethasone-induced osteoporosis. Rev. Bras. Ortop. 53, 607-613. https://doi.org/10.1016/j.rbo.2017.06.018
  15. Ferretti, C. and Mattioli-Belmonte, M. 2014. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J. Stem Cells 6, 266-277. https://doi.org/10.4252/wjsc.v6.i3.266
  16. Hanayama, R., Shimizu, H., Nakagami, H., Osako, M. K., Makino, H., Kunugiza, Y., Tomita, T., Tsukamoto, I., Yoshikawa, H., Rakugi, H. and Morishita, R. 2009. Fluvastatin improves osteoporosis in fructose-fed insulin resistant model rats through blockade of the classical mevalonate pathway and antioxidant action. Int. J. Mol. Med. 23, 581-588.
  17. Hernandez-Vallejo, S. J., Beaupere, C., Larghero, J., Capeau, J. and Lagathu, C. 2013. HIV protease inhibitors induce senescence and alter osteoblastic potential of human bone marrow mesenchymal stem cells: beneficial effect of pravastatin. Aging Cell 12, 955-965. https://doi.org/10.1111/acel.12119
  18. Hwang, D. K. and Choi, H. J. 2010. The relationship between low bone mass and metabolic syndrome in Korean women. Osteoporos. Int. 21, 425-431. https://doi.org/10.1007/s00198-009-0990-2
  19. Jadhav, S. B. and Jain, G. K. 2006. Statins and osteoporosis: new role for old drugs. J. Pharm. Pharmacol. 58, 3-18. https://doi.org/10.1211/jpp.58.1.0002
  20. Jain, M. K. and Ridker, P. M. 2005. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977-987. https://doi.org/10.1038/nrd1901
  21. Khosla, S. 2001. Minireview: the OPG/RANKL/RANK system. Endocrinology 142, 5050-5055. https://doi.org/10.1210/endo.142.12.8536
  22. Mendoza, S., Noa, M., Mas, R. and Mendoza, N. 2005. Comparison of the effects of D-003, a mixture of high-molecular-weight aliphatic acids from sugarcane wax, and pravastatin on bones and osteoclast apoptosis of ovariectomized rats. Drugs Exp. Clin. Res. 31, 181-191.
  23. Mohamed, M. T., Abuelezz, S. A., Atalla, S. S., El Aziz, L. F. A. and Gorge, S. S. 2017. The anti-osteoporotic and anti- atherogenic effects of alendronate and simvastatin in ovariectomized rats fed high fat diet: A comparative study of combination therapy versus monotherapy. Biomed. Pharmacother. 89, 1115-1124. https://doi.org/10.1016/j.biopha.2017.02.105
  24. Monjo, M., Rubert, M., Ellingsen, J. E. and Lyngstadaas, S. P. 2010. Rosuvastatin promotes osteoblast differentiation and regulates SLCO1A1 transporter gene expression in MC3T3-E1 cells. Cell Physiol. Biochem. 26, 647-656. https://doi.org/10.1159/000322332
  25. Mundy, G., Garrett, R., Harris, S., Chan, J., Chen, D., Rossini, G., Boyce, B., Zhao, M. and Gutierrez, G. 1999. Stimulation of bone formation in vitro and in rodents by statins. Science 286, 1946-1949. https://doi.org/10.1126/science.286.5446.1946
  26. Nakashima, Y. and Haneji, T. 2013. Stimulation of osteoclast formation by RANKL requires interferon regulatory factor-4 and is inhibited by simvastatin in a mouse model of bone loss. PLoS One 8, e72033. https://doi.org/10.1371/journal.pone.0072033
  27. Nissen, S. E., Tuzcu, E. M., Schoenhagen, P., Brown, B. G., Ganz, P., Vogel, R. A., Crowe, T., Howard, G., Cooper, C. J., Brodie, B., Grines, C. L. and DeMaria, A. N. 2004. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 291, 1071-1080. https://doi.org/10.1001/jama.291.9.1071
  28. Oda, Y., Sasaki, H., Miura, T., Takanashi, T., Furuya, Y., Yoshinari, M. and Yajima, Y. 2018. Bone marrow stromal cells from low-turnover osteoporotic mouse model are less sensitive to the osteogenic effects of fluvastatin. PLoS One 13, e0202857. https://doi.org/10.1371/journal.pone.0202857
  29. Ohnaka, K., Shimoda, S., Nawata, H., Shimokawa, H., Kaibuchi, K., Iwamoto, Y. and Takayanagi, R. 2001. Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem. Biophys. Res. Commun. 287, 337-342. https://doi.org/10.1006/bbrc.2001.5597
  30. Pagkalos, J., Cha, J. M., Kang, Y., Heliotis, M., Tsiridis, E. and Mantalaris, A. 2010. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J. Bone Miner. Res. 25, 2470-2478. https://doi.org/10.1002/jbmr.163
  31. Pelton, K., Krieder, J., Joiner, D., Freeman, M. R., Goldstein, S. A. and Solomon, K. R. 2012. Hypercholesterolemia promotes an osteoporotic phenotype. Am. J. Pathol. 181, 928-936. https://doi.org/10.1016/j.ajpath.2012.05.034
  32. Pirih, F., Lu, J., Ye, F., Bezouglaia, O., Atti, E., Ascenzi, M. G., Tetradis, S., Demer, L., Aghaloo, T. and Tintut, Y. 2012. Adverse effects of hyperlipidemia on bone regeneration and strength. J. Bone Miner. Res. 27, 309-318. https://doi.org/10.1002/jbmr.541
  33. Qadir, F., Alam, S. M., Zehra, T., Mehmood, A. and Siddiqi, A. Q. 2016. Role of pitavastatin in prevention of osteopenic changes in ovariectomized rats. J. Coll. Physicians Surg. Pak. 26, 41-45.
  34. Reginster, J. Y. and Burlet, N. 2006. Osteoporosis: a still increasing prevalence. Bone 38, S4-9.
  35. Rizzoli, R., Akesson, K., Bouxsein, M., Kanis, J. A., Napoli, N., Papapoulos, S., Reginster, J. Y. and Cooper, C. 2011. Subtrochanteric fractures after long-term treatment with bisphosphonates: a european society on clinical and economic aspects of osteoporosis and osteoarthritis, and international osteoporosis foundation working group report. Osteoporos. Int. 22, 373-390. https://doi.org/10.1007/s00198-010-1453-5
  36. Ruan, F., Zheng, Q. and Wang, J. 2012. Mechanisms of bone anabolism regulated by statins. Biosci. Rep. 32, 511-519. https://doi.org/10.1042/BSR20110118
  37. Shahrezaee, M., Oryan, A., Bastami, F., Hosseinpour, S., Shahrezaee, M. H. and Kamali, A. 2018. Comparative impact of systemic delivery of atorvastatin, simvastatin, and lovastatin on bone mineral density of the ovariectomized rats. Endocrine 60, 138-150. https://doi.org/10.1007/s12020-018-1531-6
  38. Sobolev, M. S., Faitelson, A. V., Gudyrev, O. S., Rajkumar, D. S. R., Dubrovin, G. M., Anikanov, A. V., Koklina, N. U. and Chernomortseva, E. S. 2018. Study of endothelio- and osteoprotective effects of combination of rosuvastatin with L-norvaline in experiment. J. Osteoporos. 2018, 1585749. https://doi.org/10.1155/2018/1585749
  39. Tadrous, M., Wong, L., Mamdani, M. M., Juurlink, D. N., Krahn, M. D., Levesque, L. E. and Cadarette, S. M. 2014. Comparative gastrointestinal safety of bisphosphonates in primary osteoporosis: a network meta-analysis. Osteoporos. Int. 25, 1225-1235. https://doi.org/10.1007/s00198-013-2576-2
  40. Takayama, T., Hiro, T., Yamagishi, M., Daida, H., Hirayama, A., Saito, S., Yamaguchi, T. and Matsuzaki, M. 2009. Effect of rosuvastatin on coronary atheroma in stable coronary artery disease: multicenter coronary atherosclerosis study measuring effects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS). Circ. J. 73, 2110-2117. https://doi.org/10.1253/circj.CJ-09-0358
  41. Wang, D., Liu, N., Gao, Y., Li, P. and Tian, M. 2014. Association between metabolic syndrome and osteoporotic fracture in middle-aged and elderly Chinese peoples. Cell Biochem. Biophys. 70, 1297-1303. https://doi.org/10.1007/s12013-014-0054-x
  42. Wang, Y. L., Hong, A., Yen, T. H. and Hong, H. H. 2018. Isolation of mesenchymal stem cells from human alveolar periosteum and effects of vitamin D on osteogenic activity of periosteum-derived cells. J. Vis. Exp. 135, E57166.
  43. Wong, S. K., Chin, K. Y., Suhaimi, F. H., Ahmad, F. and Ima-Nirwana, S. 2016. The relationship between metabolic syndrome and osteoporosis: A review. Nutrients 8, 347 https://doi.org/10.3390/nu8060347
  44. Xie, Y., Liu, C., Huang, H., Huang, J., Deng, A., Zou, P. and Tan, X. 2018. Bone-targeted delivery of simvastatin-loaded PEG-PLGA micelles conjugated with tetracycline for osteoporosis treatment. Drug Deliv. Transl. Res. 8, 1090-1102. https://doi.org/10.1007/s13346-018-0561-1
  45. Yamaguchi, T., Sugimoto, T., Yano, S., Yamauchi, M., Sowa, H., Chen, Q. and Chihara, K. 2002. Plasma lipids and osteoporosis in postmenopausal women. Endocr. J. 49, 211-217. https://doi.org/10.1507/endocrj.49.211
  46. Yang, P. M., Liu, Y. L., Lin, Y. C., Shun, C. T., Wu, M. S. and Chen, C. C. 2010. Inhibition of autophagy enhances anticancer effects of atorvastatin in digestive malignancies. Cancer Res. 70, 7699-7709. https://doi.org/10.1158/0008-5472.CAN-10-1626
  47. Yaturu, S., Humphrey, S., Landry, C. and Jain, S. K. 2009. Decreased bone mineral density in men with metabolic syndrome alone and with type 2 diabetes. Med. Sci. Monit. 15, CR5-9.
  48. Zhou, H., Xie, Y., Baloch, Z., Shi, Q., Huo, Q. and Ma, T. 2017. The effect of atorvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (HMG-CoA), on the prevention of osteoporosis in ovariectomized rabbits. J. Bone Miner. Metab. 35, 245-254. https://doi.org/10.1007/s00774-016-0750-2