References
- Bertrand, N., Castro, D. S. and Guillemot, F. 2002. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517-530. https://doi.org/10.1038/nrn874
- Cabello-Rivera, D., Sarmiento-Soto, H., Lopez-Barneo, J. and Munoz-Cabello, A. M. 2019. Mitochondrial complex i function is essential for neural stem/progenitor cells proliferation and differentiation. Front. Neurosci. 13, 664. https://doi.org/10.3389/fnins.2019.00664
- Cabezas, R., Avila, M. F., Gonzalez, J., El-Bacha, R. S. and Barreto, G. E. 2015. Pdgf-bb protects mitochondria from rotenone in t98g cells. Neurotox. Res. 27, 355-367. https://doi.org/10.1007/s12640-014-9509-5
- Cabezas, R., Vega-Vela, N. E., Gonzalez-Sanmiguel, J., Gonzalez, J., Esquinas, P., Echeverria, V. and Barreto, G. E. 2018. Pdgf-bb preserves mitochondrial morphology, attenuates ros production, and upregulates neuroglobin in an astrocytic model under rotenone insult. Mol. Neurobiol. 55, 3085-3095. https://doi.org/10.1007/s12035-017-0567-6
- Choi, S. Y., Kim, J. Y., Kim, H. W., Cho, B., Cho, H. M., Oppenheim, R. W., Kim, H., Rhyu, I. J. and Sun, W. 2013. Drp1-mediated mitochondrial dynamics and survival of developing chick motoneurons during the period of normal programmed cell death. FASEB J. 27, 51-62. https://doi.org/10.1096/fj.12-211920
- Corenblum, M. J., Ray, S., Remley, Q. W., Long, M., Harder, B., Zhang, D. D., Barnes, C. A. and Madhavan, L. 2016. Reduced nrf2 expression mediates the decline in neural stem cell function during a critical middle-age period. Aging Cell 15, 725-736. https://doi.org/10.1111/acel.12482
- Hayes, J. D., McMahon, M., Chowdhry, S. and Dinkova-Kostova, A. T. 2010. Cancer chemoprevention mechanisms mediated through the keap1-nrf2 pathway. Antioxid. Redox Signal. 13, 1713-1748. https://doi.org/10.1089/ars.2010.3221
- Park, K. Y. and Kim, M. S. 2018. Inhibition of proliferation and neurogenesis of mouse subventricular zone neural stem cells by a mitochondrial inhibitor rotenone. J. Life Sci. 28, 1397-1405. https://doi.org/10.5352/jls.2018.28.12.1397
- Kim, E. J., Ables, J. L., Dickel, L. K., Eisch, A. J. and Johnson, J. E. 2011. Ascl1 (mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6, e18472. https://doi.org/10.1371/journal.pone.0018472
- Kim, H. J., Shaker, M. R., Cho, B., Cho, H. M., Kim, H., Kim, J. Y. and Sun, W. 2015. Dynamin-related protein 1 controls the migration and neuronal differentiation of subventricular zone-derived neural progenitor cells. Sci. Rep. 5, 15962. https://doi.org/10.1038/srep15962
- Krug, A. K., Balmer, N. V., Matt, F., Schonenberger, F., Merhof, D. and Leist, M. 2013. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch. Toxicol. 87, 2215-2231. https://doi.org/10.1007/s00204-013-1072-y
- L'Episcopo, F., Tirolo, C., Testa, N., Caniglia, S., Morale, M. C., Impagnatiello, F., Pluchino, S. and Marchetti, B. 2013. Aging-induced nrf2-are pathway disruption in the subventricular zone drives neurogenic impairment in parkinsonian mice via pi3k-wnt/beta-catenin dysregulation. J. Neurosci. 33, 1462-1485. https://doi.org/10.1523/JNEUROSCI.3206-12.2013
- Lim, D. A. and Alvarez-Buylla, A. 2016. The adult ventricular-subventricular zone (v-svz) and olfactory bulb (ob) neurogenesis. Cold Spring Harb. Perspect. Biol. 8, a018820. https://doi.org/10.1101/cshperspect.a018820
- Lu, J., Li, Y., Mollinari, C., Garaci, E., Merlo, D. and Pei, G. 2019. Amyloid-beta oligomers-induced mitochondrial DNA repair impairment contributes to altered human neural stem cell differentiation. Curr. Alzheimer Res. 16, 934-949. https://doi.org/10.2174/1567205016666191023104036
- Ma, Q. 2013. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401-426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
- Nakatani, H., Martin, E., Hassani, H., Clavairoly, A., Maire, C. L., Viadieu, A., Kerninon, C., Delmasure, A., Frah, M., Weber, M., Nakafuku, M., Zalc, B., Thomas, J. L., Guillemot, F., Nait-Oumesmar, B. and Parras, C. 2013. Ascl1/mash1 promotes brain oligodendrogenesis during myelination and remyelination. J. Neurosci. 33, 9752-9768. https://doi.org/10.1523/JNEUROSCI.0805-13.2013
- Nguyen, H. T. N., Kato, H., Masuda, K., Yamaza, H., Hirofuji, Y., Sato, H., Pham, T. T. M., Takayama, F., Sakai, Y., Ohga, S., Taguchi, T. and Nonaka, K. 2018. Impaired neurite development associated with mitochondrial dysfunction in dopaminergic neurons differentiated from exfoliated deciduous tooth-derived pulp stem cells of children with autism spectrum disorder. Biochem. Biophys. Rep. 16, 24-31.
- Parras, C. M., Galli, R., Britz, O., Soares, S., Galichet, C., Battiste, J., Johnson, J. E., Nakafuku, M., Vescovi, A. and Guillemot, F. 2004. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495-4505. https://doi.org/10.1038/sj.emboj.7600447
- Pistollato, F., Canovas-Jorda, D., Zagoura, D. and Bal-Price, A. 2017. Nrf2 pathway activation upon rotenone treatment in human ipsc-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem. Int. 108, 457-471. https://doi.org/10.1016/j.neuint.2017.06.006
- Ray, S., Corenblum, M. J., Anandhan, A., Reed, A., Ortiz, F. O., Zhang, D. D., Barnes, C. A. and Madhavan, L. 2018. A role for nrf2 expression in defining the aging of hippocampal neural stem cells. Cell Transplant. 27, 589-606. https://doi.org/10.1177/0963689718774030
- Richetin, K., Moulis, M., Millet, A., Arrazola, M. S., Andraini, T., Hua, J., Davezac, N., Roybon, L., Belenguer, P., Miquel, M. C. and Rampon, C. 2017. Amplifying mitochondrial function rescues adult neurogenesis in a mouse model of alzheimer's disease. Neurobiol. Dis. 102, 113-124. https://doi.org/10.1016/j.nbd.2017.03.002
- Shaw, P. and Chattopadhyay, A. 2019. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell. Physiol. doi:10.1002/jcp.29219.
- Son, G. and Han, J. 2018. Roles of mitochondria in neuronal development. BMB Rep. 51, 549-556. https://doi.org/10.5483/BMBRep.2018.51.11.226
- von Wrangel, C., Schwabe, K., John, N., Krauss, J. K. and Alam, M. 2015. The rotenone-induced rat model of parkinson's disease: Behavioral and electrophysiological findings. Behav. Brain Res. 279, 52-61. https://doi.org/10.1016/j.bbr.2014.11.002
- Walter, J., Bolognin, S., Antony, P. M. A., Nickels, S. L., Poovathingal, S. K., Salamanca, L., Magni, S., Perfeito, R., Hoel, F., Qing, X., Jarazo, J., Arias-Fuenzalida, J., Ignac, T., Monzel, A. S., Gonzalez-Cano, L., Pereira de Almeida, L., Skupin, A., Tronstad, K. J. and Schwamborn, J. C. 2019. Neural stem cells of parkinson's disease patients exhibit aberrant mitochondrial morphology and functionality. Stem Cell Reports 12, 878-889. https://doi.org/10.1016/j.stemcr.2019.03.004
- Wu, J., Chen, Y., Yu, S., Li, L., Zhao, X., Li, Q., Zhao, J. and Zhao, Y. 2017. Neuroprotective effects of sulfiredoxin-1 during cerebral ischemia/reperfusion oxidative stress injury in rats. Brain Res. Bull. 132, 99-108. https://doi.org/10.1016/j.brainresbull.2017.05.012
- Zhou, Y., Duan, S., Zhou, Y., Yu, S., Wu, J., Wu, X., Zhao, J. and Zhao, Y. 2015. Sulfiredoxin-1 attenuates oxidative stress via nrf2/are pathway and 2-cys prdxs after oxygenglucose deprivation in astrocytes. J. Mol. Neurosci. 55, 941-950. https://doi.org/10.1007/s12031-014-0449-6