DOI QR코드

DOI QR Code

Licochalcone C Induces Autophagy in Gefitinib-sensitive or-resistant Human Non-small Cell Lung Cancer Cells

Gefitinib-민감성 또는 내성 비소세포폐암 세포에서 Licochalcone C에 의한 자가포식 유도

  • Oh, Ha-Na (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Yoon, Goo (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Chae, Jung-Il (Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University) ;
  • Shim, Jung-Hyun (Department of Pharmacy, College of Pharmacy, Mokpo National University)
  • 오하나 (목포대학교 약학대학) ;
  • 윤구 (목포대학교 약학대학) ;
  • 채정일 (전북대학교 치과대학) ;
  • 심정현 (목포대학교 약학대학)
  • Received : 2019.10.05
  • Accepted : 2019.11.23
  • Published : 2019.12.30

Abstract

Licochalcone (LC), isolated from the roots of Glycyrrhiza inflata has multiple pharmacological effects including anti-inflammatory and anti-tumor activities. To date, Licochalcone C (LCC) has induced apoptosis and inhibited cell proliferation in oral and bladder cancer cells, but lung cancer has not yet been studied. In addition, no study reported LCC-induced autophagy in cancer until now. The present study was designed to investigate the effect of LCC on gefitinib-sensitive and -resistant lung cancer cells and elucidate the mechanism of its action. The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay data showed that LCC significantly inhibited cell viability in non-small cell lung cancer (NSCLC) HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) cell lines. Interestingly, Annexin V/7-aminoactinomycin D double staining and cell cycle analysis showed an apoptosis rate within about 20% at the highest concentration of LCC. LCC induced G2/M arrest by reducing the expression of the cell cycle G2/M related proteins cyclin B1 and cdc2 in NSCLC cell lines. Treatment of LCC also induced autophagy by increasing the expression of the autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3) and the protein autophagy-related gene 5 involved in the autophagy process. In addition, LCC increased the production of reactive oxygen species (ROS), and the cell viability was partially restored by treatment with the ROS inhibitor N-acetyl-L-cysteine. In western blotting analysis, the expression of cdc2 was increased and LC3 was decreased by the simultaneous treatment of NAC and LCC. These results indicate that LCC may contribute to anti-tumor effects by inducing ROS-dependent G2/M arrest and autophagy in NSCLC. In conclusion, LCC treatment may be useful as a potential therapeutic agent against NSCLC.

감초(Glycyrrhiza inflata)의 뿌리에서 분리된 Licochalcone (LC)은 항염증 및 항종양과 같은 많은 약리학적 효과를 가지고 있다. 현재까지 LCC는 구강암과 방광암에서 연구되었지만 폐암에서의 연구는 밝혀진 바 없다. 또한, 암에서 LCC에 의해 유도된 autophagy에 대한 연구는 없었다. 본 연구는 gefitinib-민감성 또는 내성을 갖는 폐암 세포에 대한 LCC의 효과 및 작용 메커니즘을 조사하기 위해 고안되었다. MTT 분석 데이터는 LCC가 비소세포폐암 세포주인 HCC827 (gefitinib-민감성) 및 HCC827GR (gefitinib-내성)에서 세포생존율을 유의하게 억제함을 보여주었다. 흥미롭게도, Annexin V/7-aminoactinomycin D 이중 염색 및 세포주기 분석에서 가장 높은 농도의 LCC 처리는 apoptosis를 유도하는 비율이 약 10%였다. LCC는 비소세포폐암 세포주에서 세포주기 G2/M 관련 단백질인 cyclin B1 및 cdc2의 발현을 감소시킴으로써 G2/M 정지를 야기하였다. LCC의 처리는 autophagy marker 단백질인 microtubule-associated protein 1 light chain 3 (LC3) 및 autophagy과정에 관여하는 단백질인 autophagy-related gene (Atg)5의 발현을 증가시킴으로써 autophagy를 유도하였다. 또한, LCC는 reactive oxygen species (ROS)의 생성을 증가시켰으며, ROS 억제제인 N-acetyl-L-cysteine (NAC)에 의해 세포생존율이 부분적으로 회복되었다. Western blotting 분석에서, NAC과 LCC의 동시처리에 의해 cdc2의 발현이 증가하고 LC3의 발현은 감소되었다. 이러한 결과는 LCC가 비소세포폐암에서 ROS-의존적 G2/M 정지 및 autophagy를 유도함으로써 항종양 효과에 기여할 수 있음을 나타낸다. 결론적으로, LCC 치료는 비소세포폐암에 대한 잠재적 치료제로서 유용할 수 있다.

Keywords

References

  1. Edinger, A. L. and Thompson, C. B. 2004. Death by design: Apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663-669. https://doi.org/10.1016/j.ceb.2004.09.011
  2. Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C. M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A. J., Rogers, A. M., Cappuzzo, F., Mok, T., Lee, C., Johnson, B. E., Cantley, L. C. and Janne, P. A. 2007. Met amplification leads to gefitinib resistance in lung cancer by activating erbb3 signaling. Science 316, 1039-1043. https://doi.org/10.1126/science.1141478
  3. Filomeni, G., De Zio, D. and Cecconi, F. 2015. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 22, 377-388. https://doi.org/10.1038/cdd.2014.150
  4. Fung, C., Chen, X., Grandis, J. R. and Duvvuri, U. 2012. Egfr tyrosine kinase inhibition induces autophagy in cancer cells. Cancer Biol. Ther. 13, 1417-1424. https://doi.org/10.4161/cbt.22002
  5. Furusawa, J., Funakoshi-Tago, M., Mashino, T., Tago, K., Inoue, H., Sonoda, Y. and Kasahara, T. 2009. Glycyrrhiza inflata-derived chalcones, licochalcone a, licochalcone b and licochalcone d, inhibit phosphorylation of nf-kappab p65 in lps signaling pathway. Int. Immunopharmacol. 9, 499-507. https://doi.org/10.1016/j.intimp.2009.01.031
  6. Gorzalczany, Y., Gilad, Y., Amihai, D., Hammel, I., Sagi-Eisenberg, R. and Merimsky, O. 2011. Combining an egfr directed tyrosine kinase inhibitor with autophagy-inducing drugs: A beneficial strategy to combat non-small cell lung cancer. Cancer Lett. 310, 207-215. https://doi.org/10.1016/j.canlet.2011.07.002
  7. Jung, K. W., Won, Y. J., Oh, C. M., Kong, H. J., Lee, D. H. and Lee, K. H. 2017. Prediction of cancer incidence and mortality in Korea, 2017. Cancer Res. Treat. 49, 306-312. https://doi.org/10.4143/crt.2017.130
  8. Kim, Y. H., Shin, E. K., Kim, D. H., Lee, H. H., Park, J. H. and Kim, J. K. 2010. Antiangiogenic effect of licochalcone a. Biochem. Pharmacol. 80, 1152-1159. https://doi.org/10.1016/j.bcp.2010.07.006
  9. Levine, B. 2007. Cell biology: Autophagy and cancer. Nature 446, 745-747. https://doi.org/10.1038/446745a
  10. Manu, K. A., Cao, P. H. A., Chai, T. F., Casey, P. J. and Wang, M. 2019. P21cip1/waf1 coordinates autophagy, proliferation and apoptosis in response to metabolic stress. Cancers 11, 1112. https://doi.org/10.3390/cancers11081112
  11. Mathew, R., Karantza-Wadsworth, V. and White, E. 2007. Role of autophagy in cancer. Nat. Rev. Cancer 7, 961-967. https://doi.org/10.1038/nrc2254
  12. Mathiassen, S. G., De Zio, D. and Cecconi, F. 2017. Autophagy and the cell cycle: A complex landscape. Front. Oncol. 7, 51.
  13. Mizushima, N., Yoshimori, T. and Levine, B. 2010. Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  14. Oh, H. N., Seo, J. H., Lee, M. H., Kim, C., Kim, E., Yoon, G., Cho, S. S., Cho, Y. S., Choi, H. W., Shim, J. H. and Chae, J. I. 2018. Licochalcone c induced apoptosis in human oral squamous cell carcinoma cells by regulation of the jak2/stat3 signaling pathway. J. Cell Biochem. 119, 10118-10130. https://doi.org/10.1002/jcb.27349
  15. Scherz-Shouval, R. and Elazar, Z. 2011. Regulation of autophagy by ros: Physiology and pathology. Trends Biochem. Sci. 36, 30-38. https://doi.org/10.1016/j.tibs.2010.07.007
  16. Shin, A., Oh, C. M., Kim, B. W., Woo, H., Won, Y. J. and Lee, J. S. 2017. Lung cancer epidemiology in Korea. Cancer Res. Treat. 49, 616-626. https://doi.org/10.4143/crt.2016.178
  17. Soria, J. C., Jang, S. J., Khuri, F. R., Hassan, K., Liu, D., Hong, W. K. and Mao, L. 2000. Overexpression of cyclin b1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res. 60, 4000-4004.
  18. Thomas, A., Rajan, A. and Giaccone, G. 2012. Tyrosine kinase inhibitors in lung cancer. Hematol. Oncol. Clin. North Am. 26, 589-605, viii. https://doi.org/10.1016/j.hoc.2012.02.001
  19. Thorburn, A., Thamm, D. H. and Gustafson, D. L. 2014. Autophagy and cancer therapy. Mol. Pharmacol. 85, 830-838. https://doi.org/10.1124/mol.114.091850
  20. Trachootham, D., Alexandre, J. and Huang, P. 2009. Targeting cancer cells by ros-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579. https://doi.org/10.1038/nrd2803
  21. Wang, P., Yuan, X., Wang, Y., Zhao, H., Sun, X. and Zheng, Q. 2015. Licochalcone c induces apoptosis via b-cell lymphoma 2 family proteins in t24 cells. Mol. Med. Rep. 12, 7623-7628. https://doi.org/10.3892/mmr.2015.4346
  22. Wang, R. C. and Levine, B. 2010. Autophagy in cellular growth control. FEBS Lett. 584, 1417-1426. https://doi.org/10.1016/j.febslet.2010.01.009
  23. Wei, Y., Zou, Z., Becker, N., Anderson, M., Sumpter, R., Xiao, G., Kinch, L., Koduru, P., Christudass, C. S., Veltri, R. W., Grishin, N. V., Peyton, M., Minna, J., Bhagat, G. and Levine, B. 2013. Egfr-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154, 1269-1284. https://doi.org/10.1016/j.cell.2013.08.015
  24. Westover, D., Zugazagoitia, J., Cho, B. C., Lovly, C. M. and Paz-Ares, L. 2018. Mechanisms of acquired resistance to first- and second-generation egfr tyrosine kinase inhibitors. Ann. Oncol. 29, i10-i19.
  25. Yun, C. W. and Lee, S. H. 2018. The roles of autophagy in cancer. Int. J. Mol. Sci. 19, 3466. https://doi.org/10.3390/ijms19113466
  26. Zhang, X., Chen, L. X., Ouyang, L., Cheng, Y. and Liu, B. 2012. Plant natural compounds: Targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif. 45, 466-476. https://doi.org/10.1111/j.1365-2184.2012.00833.x
  27. Zheng, K., He, Z., Kitazato, K. and Wang, Y. 2019. Selective autophagy regulates cell cycle in cancer therapy. Theranostics 9, 104-125. https://doi.org/10.7150/thno.30308